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Abstract: Dam failures in tailings ponds pose severe threats to nearby ecosystems, 
residents' lives, and property. Therefore, accurately and efficiently extracting information 
on tailings ponds is essential. Remote sensing technology has become a crucial tool for 
periodic and precise detection of these ponds. However, tailings ponds vary significantly in 
color, scale, and shape, often blending with their surroundings, which limits the 
effectiveness of traditional remote sensing methods. In this paper, we propose a framework 
for extracting tailings ponds from high-resolution remote sensing images using an 
improved YOLOv5 and SegFormer. Our improved YOLOv5 incorporates the coordinate 
attention (CA) and Transformer attention mechanisms into the C3 module of the backbone, 
creating new C3CA and C3TR modules that form a hybrid attention mechanism backbone. 
For the neck network, we build on YOLOv6's Bi-directional Concatenation (BiC) module, 
replacing the nearest-neighbor interpolation with transposed convolution, and designing a 
new BiCT module to create the BiC Transposed Convolution Path Aggregation Network 
(BiCTPAN). Following detection by the improved YOLOv5, SegFormer is used to 
accurately delineate tailings pond boundaries. The results show that the improved 
YOLOv5s achieves an mAP@0.5 of 90.10%, a 4.8% increase over the original YOLOv5s, 
with minimal impact on parameters and Floating-Point Operations per Second (FLOPs). 
The SegFormer model achieves an Intersection over Union (IoU) of 87.45% and an 
accuracy of 94.1%, demonstrating excellent extraction performance. 
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1 Introduction 

A tailings pond serves as a storage facility for tailings and other industrial waste 
generated during the extraction and processing of mineral resources. It is primarily 
used for recovering mineral components remaining in tailings and recycling water. 
Tailings ponds can gradually become dangerous due to the high potential energy 
the harbor during the tailings storage process. The structural instability of tailings 
pond dams can lead to the rapid debris flow, resulting in extensive and large-scale 
damage. Moreover, tailings containing substantial quantities of heavy metals can 
cause severe pollution, potentially leading to disastrous consequences for the 
environment [1]. Due to mineral distribution and topographical considerations, 
tailings ponds are often located in remote mountainous areas or ecologically 
sensitive regions. Additionally, many enterprises neglect proper storage and 
disposal due to cost constraints, resulting in major accidents [2]. Hence, timely 
and efficient acquisition of information regarding the distribution of tailings ponds 
is crucial for effective supervision and emergency management of these facilities. 

Tailings ponds are numerous and widely distributed. The traditional manual 
investigation method is time-consuming, laborious and limited by ground 
conditions, making it unable to meet the high timeliness requirements of tailings 
pond monitoring. Remote sensing technology offers several advantages, including 
extensive coverage and rapid data acquisition cycle. Consequently, it has become 
a pivotal technology for current tailings pond monitoring and identification. 
Traditional approaches can be categorized into three types: (1) visual 
interpretation method. Farrand et al. [3] used a constrained energy minimization 
technique to map the distribution of mine tailings in the Coeur d'Alene River 
Valley. Xiao et al. [4] used visual interpretation signs to identify and extract 
tailings pond information through human-computer interaction. (2) Index 
construction method. Ma et al. [5] employed Landsat 8 Operational Land Imager 
(OLI) data and a newly constructed ultra-low-grade iron index along with 
temperature information to accurately identify tailings. Hao et al. [6] introduced a 
tailings extraction model using various tailings indices based on iron-bearing 
minerals. (3) Classification identification method. Wu et al. [7] designed a support 
vector machine method for automatic detection of tailings ponds. Yu et al. [8] 
employed an object-oriented and random forest method for tailings pool 
identification. 

The close integration of deep learning technology and remote sensing has spurred 
extensive exploration of tailings extraction methods based on deep learning 
technology. Lyu et al. [9] proposed a new deep learning-based framework for 
extracting tailings pond margins from high spatial resolution (HSR) remote 
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sensing images by combining YOLOv4 and the random forest algorithm. Yan et 
al. [10] improved the Faster R-CNN deep learning object detection model by 
increasing the inputs from three true-color bands to four multispectral bands. 
Zhang et al. [11] proposed a Pseudo-Siamese Visual Geometry Group Encoder-
Decoder network to achieve high accuracy in tailing pond extraction from VHR 
images. Wang et al. [12] proposed a fast tailings pond extraction method (Scene-
Classification-Semantic-Segmentation, SC-SS) that couples scene classification 
and semantic segmentation models. 

In summary, while there has been substantial progress in the research on tailings 
pond detection, traditional methods based on manually designed features are 
difficult to obtain accurate detection results. Although deep learning has enhanced 
the accuracy of tailings pond detection, the complex background, distinct 
variations in tailings pond characteristics, and an uneven and sparse spatial 
distribution pose significant challenges. Therefore, this paper proposes a 
framework for extracting tailings ponds from high-resolution remote sensing 
images using improved YOLOv5 and SegFormer. For sample set construction, 
model misdetection is reduced by adding negative samples. In improved 
YOLOv5, a novel hybrid attention backbone is constructed by integrating CA and 
Transformer attention mechanisms with the C3 module of YOLOv5 backbone. 
Furthermore, we incorporate the idea of the BiC module and use transposed 
convolution in the neck, resulting in the formation of the BiCTPAN neck.  
The SegFormer identifies the boundaries of the tailings ponds based on the 
detection results obtained from improved YOLOv5. 

2 Study Area and Data 

2.1 Study Area 

Laiyuan County is located in the northwest of Baoding City, Hebei Province, as 
shown in Figure1. It has the highest density of tailings ponds in the Beijing-
Tianjin-Hebei region, approximately 200/km2, with various types and high 
potential risks [13]. Furthermore, the area is populated with ground objects that 
resemble tailings ponds, including reservoirs, exposed soil, barren rock, and man-
made structures. These similar ground objects can significantly influence the 
precision of tailings pond extraction. Therefore, we selected Laiyuan County and 
its surrounding areas as the research area, which is of great significance for 
verifying the performance of the tailings ponds extraction method and meeting 
actual regulatory needs. 
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Figure 1 

Study area(Image source: gaofen-6) 

2.2 Data and Preprocessing 

Gaofen (GF)-6 was successfully launched on June 2, 2018, and it boasts advanced 
imaging capabilities. It is equipped with a 2-meter panchromatic/8-meter 
multispectral high-resolution camera, offering a wide observation width of 90 
kilometers. Additionally, it features a 16-meter multispectral medium-resolution 
wide-format camera with an impressive observation width of 800 kilometers. For 
this study, the images used were obtained by the multispectral high-resolution 
camera on September 6th, 2019, with cloud coverage measuring less than 10%. 

The acquired data is at the L1A level and requires several preprocessing steps, 
including radiometric calibration, atmospheric correction, and orthorectification. 
Initially, the original data undergo radiometric calibration, using the GF-6 
calibration parameters. Subsequently, the FLAASH model is applied for 
atmospheric correction. To rectify geometric distortions and enhance geometric 
accuracy, the atmospherically corrected data is orthorectified, relying on the 
rational polynomial coefficient file of the image and the corresponding digital 
elevation model data. Wang et al. [14] identified the GF-1 standard false color 
image as the optimal band combination for effectively identifying tailings ponds. 
Given the similarity in high spatial resolution camera parameters between GF-6 
and GF-1, standard false-color images from GF-6 were employed for tailings pond 
extraction.  It's worth noting that the original GF-6 image data is in 12-bit format, 
which has been converted to 8-bit for this study. The length and width of tailings 
ponds typically fall within the range of 50 to 3000 meters, and their external 
perimeters can span from 300 to 12600 meters, making them quite prominent in 
imagery [13]. Therefore, this study uses images with an 8-meter resolution for the 
detection of tailings ponds. 
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3 Methodology 

The proposed framework for tailings pond extraction is shown in Figure 2.  
The framework can be summarized in the following steps: (1) Incorporate the 
Coordinate Attention (CA) and Transformer attention mechanisms into the 
YOLOv5 backbone to create the Hybrid Attention (HA) mechanism backbone. 
This enhancement bolsters the model's capability to extract features effectively. 
(2) Implement the concept of the BiC module from YOLOv6 into the neck of 
YOLOv5, resulting in the design of the BiPAN neck network. This modification 
improves the fusion of model features. (3) Use the improved YOLOv5 detection 
results as a foundation for employing SegFormer to extract the boundaries of the 
tailings ponds. 

Backbone

Hybrid Attention

Neck

BiCT module

Head

Improved YOLOv5

SegFormer

Encoder Decoder

 
Figure 2 

Flowchart for extraction of tailings ponds 

3.1 Hybrid Attention Backbone 

The introduction of attention mechanisms has been demonstrated to significantly 
enhance the performance of various computer vision tasks [15]. Among the most 
widely used attention mechanisms is the Squeeze and Excite (SE) attention [16]. 
However, SE only considers the attention in the channel dimension and ignores 
the information in the spatial dimension. The convolutional block attention 
module (CBAM) simultaneously pays attention to the channel and spatial 
dimension attention information [17]. CA outperforms other attention modules 
(e.g., SE, CBAM) by factorizing the 2D global pooling operations into two one-
dimensional encoding processes [18]. The C3 module serves as a key module for 
YOLOv5 to learn more features. In the entire GF-6 image, a large number of 
small-sized tailings ponds are generally sparsely and non-uniformly distributed, 



Z. Sun et al. Extracting Tailings Ponds from High Spatial Resolution Remote Sensing Images  
 using Improved YOLOv5 and SegFormer 

 – 142 – 

making it  difficult to distinguish them from the surrounding background, which 
makes tailings pond extraction challenging. The YOLOv5 with the C3 module 
cannot overcome this deficiency well because it lacks the ability to obtain global 
and contextual information [19], but the transformer can better integrate the 
semantic information of contextual features and global features and has a good 
recognition effect for sparse small targets with complex backgrounds [20] [21]. 
We enhance the C3 model by incorporating a transformer to form a C3TR module 
plugged into the backbone. Due to the high computational cost of the transformer, 
it is not feasible to incorporate the C3TR module into the network extensively. 
Therefore, the adoption of lightweight networks is necessary [22]. Considering the 
excellent performance of CA and its lightweight network structure, we 
concatenate the CA mechanism module with the C3 module to form the C3CA 
module. Multiple C3CA modules and a single C3TR module are integrated into 
the backbone to form a hybrid attention backbone. This enables the backbone to 
effectively capture long-range dependencies and global information in images 
without significantly increasing computational complexity, thus enhancing the 
extraction of meaningful features. The hybrid attention backbone is illustrated in 
Figure 3. 
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Figure 3 

Hybrid attention backbone 

3.2 BiCTPAN Neck 

Multi-scale feature fusion is a crucial component of target detection. Feature 
Pyramid Network (FPN) merges low-level and high-level semantic features in a 
top-down manner to provide more accurate localization. YOLOv5 neck extends 
FPN by introducing a bottom-up path, facilitating the precise transmission of low-
level feature information. However, YOLOv5 neck may not extract features 
comprehensively, leading to a decrease in target recognition accuracy [23]. To 
obtain more precise positioning information, this paper draws inspiration from 
YOLOv6 (v3.0) and incorporates the concept of its BiC module into the neck, 
resulting in the design of the BiCT module. This modification allows low-level 
features to participate more efficiently in multi-scale feature fusion, further 
enhancing the expressive capacity of the fused features. The BiCT module is 
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depicted in Figure 4, where BiCT combines feature maps from three adjacent 
layers. In contrast, to YOLOv5's neck, there are two feature paths from the 
backbone, namely Ci-1 and Ci, ensuring more comprehensive feature fusion from 
the backbone network. Additionally, the original upsampling method has been 
replaced with transposed convolution (ConvTranspose2d). BiCT is integrated into 
the YOLOv5 neck, forming BiCTPAN, as shown in Figure 4. 
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Figure 4 
BiCTPAN neck 

3.3 SegFormer 

SegFormer is a Transformer-based semantic segmentation model [24], comprising 
an encoder and a decoder, as illustrated in Figure 5. The SegFormer encoder is 
equipped with four Transformer Blocks responsible for generating feature maps 
with different resolutions. These Transformer Blocks include Efficient Self-
Attention (ESA), Mix-FFN, and Overlapped Patch Merging (OPM). The Vision 
Transformer (ViT) divides the input image into non-overlapping patches, 
disrupting the local continuity around these patches. The introduction of OPM 
effectively addresses this issue, enabling the extraction of large tailings ponds that 
have been split into different adjacent patches to still achieve excellent results. 
Self-attention plays a pivotal role in capturing the global aspect of the image but 
can be computationally intensive. ESA improves computational efficiency by 
reducing sequence length, making it a key component. Mix-FFN serves the 
purpose of adding location information to feature maps, contributing to the 
model's effectiveness. The decoder in SegFormer consists of Multilayer 
Perceptrons (MLP), which are lightweight yet efficient in capturing range 
information about the tailings reservoir. Firstly, multi-level features are fed into 
the MLP layer to normalize channel dimensions. Subsequently, the feature map is 
upsampled to 1/4 of the original image size and concatenated. Finally, an 
additional MLP layer is employed to aggregate the feature channels and perform 
classification prediction. 
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Figure 5 

The architecture of SegFormer 

3.4 Evaluation Methods 

The Mean Average Precision (mAP) is a commonly used metric for assessing the 
performance and reliability of object detection models. In this paper, mAP@0.5 is 
employed to evaluate the performance of the YOLOv5 model in detecting tailings 
ponds. It represents the mAP value when the Intersection over Union (IoU) 
threshold is set to 0.5. IoU is the ratio of the intersection and union of two sets of 
real labels and predicted values for a specific category. SegFormer chooses IoU 
and accuracy (Acc) as evaluation metrics, where Acc represents the proportion of 
correctly predicted pixels out of the total pixels. Additionally, the article also 
includes parameters and Floating-Point Operations per Second (FLOPs) as 
indicators to measure the storage and computational resource requirements for 
model operation, respectively. 

Positive Positive PositivePrecision=True /(True False+ )                  (1) 

Precision/(Total number of objects)AP = ∑                          (2) 

              mAP= Average precision/(Total number of classes)∑                (3) 

( ) / ( ) ( ) / ( )n n n n n nn N
IoU I t U t t t t

∈
= = ∗ ϒ + ϒ − ∗ ϒ∑                (4) 

Positive negative Positive negative Positive negative= /( )+Acc (True +True True True False +False) +       (5) 

where Truepositive signifies that the predicted and actual class is positive, Talsepositive 
means that the predicted class is positive and the actual class is negative, 
Truenegative means that the predicted class is negative and the actual class is 
positive, while in a Falsenegative, the predicted and actual class is negative. IoU 
defined by Equation (4) gives the ratio of intersection and union of the predicted 
bounding box and ground truth bounding box. t represents the probability outputs 
of pixel set n after filter by activation function in the GF-6 image; γ denotes the 
data set composed of ground truth bounding box. 
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3.5  Experimental Environment 

The processor is Intel(R) Core(TM) i7-8750H at 3.80 GHz, memory 16G, GPU is 
NVIDIA RTX2070. The operating system is Windows 10, 64-bit, Cuda 11.3 and 
cuDNN 8.4.0. The depth learning framework is PyTorch 1.12.1. 

The hyperparameters of YOLOv5 are set as follows: the training steps are 300 
epochs; the warmup epoch and warmup momentum are respectively set as 3 and 
0.8; the training and test batch size is 16. The optimization algorithm is a 
stochastic gradient descent (SGD) optimizer with an initial learning rate of 0.01; 
the momentum and weight decay are respectively set as 0.937 and 0.0005. 

The hyperparameter settings of the SegFormer model are as follows: due to 
limited GPU memory, the B1 model of SegFormer is used; the number of 
iterations is 8000; the loss function is cross-entropy loss; the batch size (batch size) 
is set to 4; the learning rate is initialized to 0.00006. The optimizer is AdamW; the 
weight decay coefficient (weight decay) is 0.01. 

4 Results and Discussion 

4.1  Sample Preparation 

We labeled 950 tailings pond samples for training the improved YOLOv5 to 
detect tailings ponds. To mitigate the model's tendency for erroneous detection of 
similar ground objects and improve its generalization, we also labeled 275 
negative samples. Of these, 90% was allocated for the training dataset, and the 
remaining 10% were reserved for the validation set. Considering the constraints of 
computing hardware, such as GPU limitations, the sample size was set to 500 × 
500 pixels with a resolution of 8 meters. To ensure the fairness of the experiment, 
the same dataset was employed for all tailings pond detection experiments. 

For SegFormer training, the sample image size was set to 600×600 to ensure 
coverage of tailings ponds. To obtain more targeted samples and achieve better 
extraction results, we initially extracted the center points from the detection 
frames produced by the improved YOLOv5 model. These center points were then 
used as the centers for generating the training samples. The dataset was divided 
into training and validation sets with a ratio of 0.85:0.15 for effective training and 
evaluation. 
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4.2  Results 

4.2.1 Results of Improved YOLOv5 

YOLOv5 is a widely used deep learning framework that comprises five network 
models of different sizes denoted as s, m, l, x, and n, representing various depths 
and widths of the network. In this study, we selected the YOLOv5s model size. 
Figure 6 illustrates the results of tailings pond detection using both YOLOv5s and 
the improved YOLOv5s. The yellow detection frames represent the results 
obtained by YOLOv5s, while the blue detection frames represent the results 
achieved with the improved YOLOv5s. Figure 6(a) and (b) are the results of using 
YOLOv5s and improved YOLOv5s to detect tailings ponds from the entire GF-6 
image by combining overlapping slicing and a global non-maximum suppression 
algorithm [25]. Figures 6(c) and (d) depict results for specific local regions. 
Figures 6(c) and (d) showcase results for specific local regions. In Figure 6(c), it 
can be observed that both YOLOv5s and the improved YOLOv5s successfully 
detected the two tailings ponds in the image. But judging from the range of the 
detection frame, the improved YOLOv5s exhibits more accurate localization of 
the tailings ponds. Figure 6(d) shows an instance where YOLOv5s exhibits an 
error in detection. The ground object marked only with a yellow frame is a factory 
that is very similar to a tailings pond. In summary, the improved YOLOv5s proves 
to be more accurate in identifying tailings ponds and effectively reduces false 
detections. 

 
(a)                                                                (b) 
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(c)                                                                (d) 
Figure 6 

The comparison results of YOLOv5s and improved YOLOv5s 

Table 1 presents the quantitative results for YOLOv5s and the improved 
YOLOv5s. In comparison to YOLOv5s, the mAP@0.5 of the improved YOLOv5s 
increased by 4.80%, reaching 90.10%. Despite a slight increase in the number of 
parameters by 0.76 M and FLOPs by 0.4G, these increments are negligible when 
considering the advanced storage and computational resources. Therefore, the 
improved YOLOv5s achieves a significant boost in accuracy with virtually no 
increase in computational cost. 

Table 1 
Quantitative comparison results of YOLOv5s and improved YOLOv5s 

models parameters/M mAP@0.5/% FLOPs/G 
YOLOv5s 7.02 85.30 15.80 

Improved YOLOv5s 7.78 90.10 16.20 

4.2.2 Results of SegFormer 

Based on the detection results obtained using the improved YOLOv5s, SegFormer 
was employed to determine the extent of the tailings ponds. The extraction 
outcomes are presented in Figure 6. Figure 7(a) displays the extraction results of 
tailings ponds from the entire GF-6 image. To further illustrate the extraction 
performance of SegFormer, a specific local region was selected for display, as 
indicated by the red frame in Figure 7(a). Figure 7(b) shows the detection results 
based on the improved YOLOv5s, revealing that all tailings ponds in the region 
were successfully detected with accurate bounding frame positioning. In Figure 
7(c), the manually labeled tailings ponds range information for this area is 
presented, while Figure 7(d) shows the outcomes of tailings ponds range 
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extraction using the SegFormer. It can be seen that the tailings ponds detected by 
the improved YOLOv5s are all detected by the SegFormer. Compared with the 
manually labeled tailings ponds, the SegFormer model identifies Range 
information is very precise. 

 
(a)                                                                (b) 

 
(c)                                                                (d) 

Figure 7 
The comparison results of YOLOv5s and improved YOLOv5s 

Table 2 presents the quantitative results for the SegFormer extraction of tailings 
ponds. It achieves an IoU of 87.45% and an Acc of 94.10%, demonstrating 
excellent extraction accuracy and reliability. Additionally, the model maintains a 
small number of parameters and FLOPs, resulting in minimal storage and 
computational resource consumption. 
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Table 2 
The Quantitative comparison results of SegFormer 

category IoU/% Acc/% parameters /M FLOPs/G 
background 98.08 98.89 

13.68 15.29 
tailing ponds 87.62 94.28 

4.3  Discussion 

4.3.1 Ablation Experiment 

To assess the impact of different improvement strategies on the model, ablation 
experiments were conducted, and the results are presented in Table 3. According 
to Table 3, YOLOv5s with a hybrid attention backbone exhibits a 3.4% increase in 
mAP@0.5 compared to YOLOv5s, while maintaining a similar number of 
parameters and a reduction of 0.2G in FLOPs. In comparison, YOLOv5s with a 
BiCTPAN neck achieves a 3.1% increase in mAP@0.5 over YOLOv5s. However, 
this improvement comes with a slight increase of 0.16M parameters and an 
increase of 0.9G in FLOPs. The improved YOLOv5s demonstrates the highest 
improvement in mAP@0.5 compared to the baseline YOLOv5s. However, it also 
exhibits the most significant increase in parameters. Nevertheless, FLOPs are 
reduced by 0.5G when compared to YOLOv5s with BiCTPAN. 

Table 3 
Ablation study results 

models parameters 
/M mAP@0.5/% improvement over 

YOLOv5s /% 
FLOPs/

G 
YOLOv5s 7.02 85.30 -- 15.80 

+HA backbone 7.07 88.70 +3.40 16.00 
+BiCTPAN neck 7.18 88.40 +3.10 16.70 

improved YOLOv5s 7.78 90.10 +4.80 16.20 

4.3.2 Comparison with Other Object Detection Methods 

To demonstrate the effectiveness of the improved YOLOv5s in detecting tailings 
ponds on GF-6 images, this study compares the performance of our method with 
that of several other object detection methods, such as YOLOv8s, YOLOv5l, 
YOLT [26] and improvedv8s. The improved yolov8s has the same structure as the 
improved yolov5s. The improved yolov8s has the same structure as the improved 
yolov5s. Since YOLOv8 uses the C2f module instead of C3, the C3CA model is 
changed to the C2fCA module, which combines C2f and CA. 

Table 4 compares the performance of various methods. Our approach and the 
improved YOLOv8s achieve the highest mAP@0.5, followed by the improved 
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YOLTv5s, YOLOv8s, and YOLOv5l. YOLOv8, as one of the latest models in the 
YOLO family, incorporates a new C2f module and a decoupled head, yielding 
excellent performance. YOLTv5, an evolution of YOLOv5, represents the fifth 
version of YOLT, and we selected the "s" (small) model size for comparison. 
Compared to YOLOv5s, YOLOv5l has a larger depth and layer channel multiplier, 
which generally provides better detection performance. Although the improved 
YOLOv8s also demonstrates strong results, it has a high parameter count and 
FLOPs. Our method is highly competitive in terms of parameter count and FLOPs, 
with only a slight increase of 0.72M parameters and 0.2G FLOPs compared to the 
best YOLT model. 

Table 4 
Experimental results of comparative experiments 

models parameters /M mAP@0.5/% FLOPs/G 
YOLOv5l 46.11 87.60% 108.2 
YOLOv8s 11.13 88.00% 28.60 
YOLTv5s 7.06 88.60% 16.00 

improved YOLOv8s 11.32 90.10% 29.40 
Ours 7.78 90.10% 16.20 

4.3.3 Attention Mechanism Comparison 

To evaluate the effectiveness of the hybrid attention backbone, it was compared 
with backbones incorporating SE, CBAM, and CA attention mechanisms. SE and 
CBAM were integrated into the C3 module in a manner similar to C3CA resulting 
in the creation of C3SE and C3CBAM modules. The SE, CBAM, and CA 
attention mechanism backbones were constructed by replacing all C3 modules in 
the YOLOv5s backbone with C3SE, C3CBAM, and C3CA, respectively. Table 4 
presents the comparison results for different attention backbones. The results 
demonstrate that the hybrid attention backbone achieves the highest mAP@0.5. 
Compared to the SE attention backbone network, mAP@0.5 increases by 2.2%. In 
comparison to the CBAM attention backbone network, mAP@0.5 increases by 
2.4%. Finally, in comparison to the CA attention backbone network, mAP@0.5 
increases by 1.4%. However, the changes in model parameters and FLOPs are 
relatively minor. 

Table 4 
Quantitative comparison results of YOLOv5s and improved YOLOv5s 

models parameters/M mAP@0.5/% FLOPs/G 
YOLOv5s 7.02 85.30 15.80 

SE attention backbone 7.06 86.50 15.80 
CBAM attention backbone 7.06 86.30 15.80 

CA attention backbone 7.05 87.30 15.80 
Hybrid attention backbone 7.07 88.70 16.00 
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4.3.4 Model Generality 

To verify the generalizability of the model, we selected a GF-6 image from 
Xuanhua District, Hebei Province. This image, captured by a high-resolution 
multispectral camera on October 21, 2019, has cloud coverage below 10%. After 
data preprocessing, we labeled 1,489 samples, with an equal split of positive and 
negative samples. The dataset was divided into training and validation sets at a 9:1 
ratio, and each sample was 500×500 pixels. Training parameters remained 
unchanged. We also conducted ablation experiments on this new dataset, with 
results shown in Table 5. Table 5 demonstrates that each model component 
contributes to the accurate identification of tailings ponds. Compared to the 
original YOLOv5, our improved YOLOv5 achieved an mAP increase of +0.17, 
with minimal change in parameter count and FLOPs, indicating strong model 
generalizability. 

Table 5 
Ablation study results in different regions 

models parameters 
/M mAP@0.5/% improvement over 

YOLOv5s /% 
FLOPs/

G 
YOLOv5s 7.02 0.851 -- 15.80 

+HA backbone 7.07 0.855 +0.04 16.00 
+BiCTPAN neck 7.18 0.859 +0.08 16.50 

improved YOLOv5s 7.19 0.869 +0.18 16.60 

4.3.5 Limitations and Future Work 

While the improved YOLOv5s achieved enhanced detection results for tailings 
ponds, there are still instances of misidentification. Figure 8 illustrates some 
typical cases of model misidentification. These cases mainly involve artificial 
objects such as buildings, with a few instances of bare soil targets.  
The misidentifications occur due to their resemblance to tailings ponds in terms of 
shape and spectral characteristics.  In addition, YOLOv5s takes 71.76 seconds to 
detect all tailings ponds from GF-6 images, while the improved YOLOv5s takes 
108.98 seconds, which is 1.52 times longer than YOLOv5s. SegFormer also 
experienced extraction errors. Some error cases are shown in Figure 9. It can be 
seen that some artificial objects and bare soil are incorrectly extracted not only by 
the improved YOLOv5s, but also by SegFormer. We should not ignore that the 
samples for training SegFormer depend on the results of the improved YOLOv5s. 
Some samples missed by YOLOv5s are not considered, which may affect the 
extraction accuracy of SegFormer. Moreover, using two models also increases the 
running time of the extraction framework. 

Additionally, several key challenges in identifying tailings ponds require attention. 
Tailings ponds in different regions exhibit significant variations in remote sensing 
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images, including differences in brightness, hue, and scale. Due to diverse 
construction methods, these ponds may appear in various shapes, such as 
rectangles, triangles, circles, and irregular polygons. They are also situated against 
varied backgrounds, including vegetation, bare land, and sand. To improve the 
accuracy of tailings pond identification, it is essential to consider a wider range of 
features and integrate different types of data. Literature [28, 29] and our findings 
suggest combining of multiple attention mechanisms outperforms a single 
attention mechanism. Investigating how the integration of different attention 
mechanisms and their incorporation into various parts of YOLOv5s affects 
tailings pond detection is a promising research direction. Seasonal and sensor 
channel variations can limit the model's applicability, it may be beneficial to 
consider the introduction of a Generative Adversarial Network (GAN) to mitigate 
the differences in image hues acquired during different seasons and with different 
sensors. 

    
Figure 8 

Some misidentified cases identified by improved YOLOv5s 

    
Figure 8 

Some cases of incorrect extraction by SegFormer 

Conclusions 

In this paper, we propose a framework for extracting tailings ponds from GF-6 
high spatial resolution remote sensing images using the improved YOLOv5 and 
SegFormer. The tailings pond dataset is generated based on the GF-6 high-
resolution standard false color image and the strategy of incorporating negative 
samples. We introduced the C3CA and C3TR modules, which are formed by the 
CA and Transformer attention mechanisms, into the backbone network to 
construct a hybrid attention backbone. Additionally, we designed the BiCT 
module inspired by the BiC module in YOLOv6 to create the BiCTPAN neck. 
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SegFormer is employed to accurately delineate the range of tailings ponds based 
on improved YOLOv5 detection results. Our results demonstrate that compared to 
YOLOv5s, the improved YOLOv5s achieved a substantial 4.80% increase in 
mAP@0.5 with minimal additional computational cost. Furthermore, the hybrid 
attention backbone and BiCTPAN neck, which we designed, improved mAP@0.5 
by 3.40% and 3.1%, respectively. The SegFormer model displayed remarkable 
accuracy in extracting tailings pond coverage, achieving an IoU of 87.45% and an 
Acc of 94.10%. Combining the improved YOLOv5 and SegFormer can yield high 
accuracy and stability in the extraction of tailings ponds. This method provides an 
effective tool for government agencies involved in tailings pond inventory and 
serves as a valuable reference for mine safety and environmental monitoring 
efforts. 
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