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Abstract: Several automatic and semi-automatic algorithms for adipose tissue (AT) 
segmentation in CT have been proposed. Our study aimed to determine the effect of the 
preselected HU range, on the resulting AT volumes and establish whether there is a 
relationship between body shape and AT values determined, from a single slice. Scans of 98 
patients acquired using two CT protocols, were used. Three axial slices were selected from 
each subject's CT data. Subcutaneous and visceral adipose tissues (SAT, VAT) were 
manually segmented and analyzed using three different HU ranges. In addition, a simple 
BMI calculation model was created by the segmented data. The areas segmented with the 
three different HU ranges, correlated well with each other in the case of SAT (r2=0.99, and 
r2=0.99) and VAT (r2=0.99, and r2=0.998). The preselected slice position had no significant 
effect on correlation; however, the absolute values of ATs were statistically different. CT 
image data acquired with higher tube current yielded a better correlation between SAT, VAT, 
and BMI. We also found that the correlation of VAT area to mass and BMI was weaker than 
the corresponding SAT correlations. The simple model-based BMI estimation is in line with 
real BMI data (males: r2=0.78, females: r2=0.841). The segmentation threshold does not 
substantially affect correlation, among the segmented AT values; however, their absolute 
values are significantly different. In addition, and interestingly, the body shape can be 
accurately described from the segmented AT data from a single CT slice. 

Keywords: CT; fat; segmentation 

1 Introduction 

It is well known that obesity is closely associated with diabetes, fatty liver, 
cardiovascular disease and various cancers [2, 17, 24, 33]. Visceral fat resides 
between organs, while subcutaneous fat is located beneath the skin. Another 
substantial difference between these two types of fat is that visceral fatty tissue 
functions as an endocrine organ, contributing to the pathogenesis of several diseases 
[5]. Particularly, VAT has a major impact on these diseases, and several articles 
underline the importance of accurately measuring visceral tissue volume [11, 28, 
35]. On the other hand, there is also increased attention on body composition in 
which SAT and VAT determination is a critical element in addition to muscle 
volume measurement. Neither X-ray nor any of the nuclear medicine techniques are 
unable to help in precisely determining the amount of fatty tissue, only MRI and 
CT can provide means to segment the adipose regions in the body [9, 12, 13, 15, 
18, 25]. Reviewing the literature, we found some articles that tried to estimate 
adipose tissue with other modalities, such as ultrasound. For example, Stolk et al. 
measured the distance between the peritoneum and the lumbar spine using 
ultrasound with a strict protocol to calculate adipose tissue volume [29] [30]. 

The numerical characterisation of adipose tissue volume calculated from CT data 
can be regarded as the most frequently used method [16, 34]. Measurement of SAT 
and VAT values is usually accomplished on a single CT slice at the level of the 
umbilicus [24] or the level of T12-L1, L2-L3, L3-L4 or L4-L5 vertebral bodies [2, 
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11, 13, 15, 16, 27, 35]. In theory, total volume measurement of VAT or SAT would 
be more advantageous than estimation from a single CT slice, however proper 
segmentation may not be automatically performed at the diaphragm or near the 
pelvis, moreover limited number of slices available at CT. Several investigators 
have suggested and have developed sophisticated automatic algorithms for the 
segmentation of adipose tissue in a large body volume [23] [31], however it has 
been shown recently that the single slice measurement can accurately predict the 
changes in VAT volume and body weight. 

Today, CT is the only clinically applied imaging modality that provides 
quantification of the different tissues based on pixels and Hounsfield unit values. 
Actually, the HU scale is relative because different X-ray beam energies result in 
different CT values, thus, it is essential to take into consideration the applied tube 
voltage. Furthermore, the mentioned scale depends on the radiologists. While CT is 
one of the most important modalities to assess adipose volume, in the literature, 
several independent segmentation algorithms have been introduced applying 
different Hounsfield Unit (HU) ranges: −190/–30 HU, −200/–10 HU, −250/–50 
HU, −195/–45 HU [5, 11, 19, 23, 24, 28, 34]. To the best of our knowledge, it has 
not been extensive investigation pertaining to how the HU range selection might 
influence the segmented SAT/VAT volumes, so we aimed to: 

i) Compare three commonly used ranges 

ii) Study how the selected slice position affects the segmented adipose tissue 
area. In addition, one of the research groups has developed a linear model to 
estimate the patient's body shape and BMI index along with the fat-tissue 
segmentation technique [10]. However, this model is rather complex, and it 
depends on at least six different parameters, and the actual formula varies 
with gender. The model also includes several arbitrary constants, depending 
on the CT scanner. 

iii) Examine these models based on our CT data and to simplify the model. 

2 Materials and Methods 

Ninety-eight human CT examinations were randomly selected from March 2012 to 
September 2013. Since all patient related data were retrospectively analyzed, 
informed consent was not obtained. All CT examinations were scanned by Philips 
Brilliance 64 CT scanner with two different protocols. However, of the 98 
participants, only 14 were tested with both protocols, where the axial length scan 
was shorter. 

The patient population included outpatients who were being assessed for several 
diseases. Participants’ anthropometric data: 51 males mean age of 59 years (range 
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31-83 years), mean weight of 87 kg (range 54-150 kg), mean height of 1.7 m (range 
1.52- 1.9 m), mean body mass index 34 kg/m2 (range 23-58 kg/m2)) and 47 females 
mean age of 62 (range 32-94 years), mean weight of 75 kg (range 44-110 kg), mean 
height of 1.62 m (range 1.5-1.77) and mean body mass index 33 kg/m2 (range 23-
55 kg/m2)). The local medical ethics committee approved the study and waived the 
requirement to obtain informed consent (DE RKEB/IKEB 6593-2023). To ensure a 
constant signal-to-noise ratio, a standard dose optimization algorithm was applied, 
in which increasing X-ray exposures were used with increasing body weight in both 
CT protocols. In Protocol-I, a larger mAs range was set (100-200 mAs) for better 
image quality, while in Protocol-II, X-ray exposures were about half of those used 
in Protocol-I. The tube voltage was set to 120 kV in all cases. 

Three axial slices (L1 vertebra and the hilar region of the right and left kidney, 
respectively) [25] [26] were selected from the sagittal reconstruction for image 
processing. Two ROIs (region of interest) were drawn on each image manually 
(Figure 1) in the MATLAB program on a diagnostic monitor by a radiographer with 
five years of professional experience in CT imaging; the larger one was defined by 
the body contour (green line), and the smaller one encompassed the abdominal 
cavity (red line). 

 
Figure 1 

The amount of subcutaneous fat tissue (SAT) is defined by the total number of segmented pixels 
within the space between the green and red ROIs, while the visceral fat tissue (VAT) is defined by 

those within the region in the red ROI 

Although several automatic adipose tissue segmentation algorithms are proposed in 
the literature [14, 23, 28, 32], they are not entirely accurate, confirmation and 
correction are usually necessary by radiologists. In our study, fat tissue 
segmentation was performed based on three different ranges of attenuation [window 
level/window width in HU]: -190/-30 HU, -150/-40 HU, -195/-45 [8] [31]. SAT and 
VAT were determined as the number of segmented pixels within the red ROI and 
between the red and green ROIs, respectively. Thus, SAT and VAT values were 
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calculated by using three different attenuation ranges. In addition, the three different 
SAT (SATi, i=1,2,3) and three different VAT (VATi, i=1,2,3) estimations were 
obtained for three different sections (Figure 2). 

 
Figure 2 

Segmentations were prepared with three different HU ranges using slices acquired at the level of the 
L.1. vertebra, and at the level of the hilum of the right and the left kidney 

In each case, we calculated the BMI as follows: 

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑡𝑡
ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡2

[𝑘𝑘𝑘𝑘
𝑚𝑚2] (1) 

The weight and height data were collected by the patients’ self-declaration. Data 
obtained from the reconstructed images allowed us to estimate the BMI by the 
following formulas [8] [10]: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: 2.069 + (0.037 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆) − (0.05 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎) + (0.984 ∙ 𝐵𝐵𝐵𝐵𝐵𝐵) −
(2.647 ∙ 𝐿𝐿1𝐴𝐴𝐴𝐴𝐴𝐴) (2) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓: − 9.163 + (0.252 ∙ 𝐵𝐵𝐵𝐵) + (10.621 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆
𝐵𝐵𝐵𝐵

) −  (0.08 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎) +
(0.597 ∙ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵). (3) 

These formulas require the horizontal and anteroposterior (AP) diameters of the 
body (BTD, BAPD), the diameter of the vertebral body (L1APD), the body 
circumference (BC), the total body area (BA) of the axial slice, the subcutaneous 
fatty area (SQA) and the patient's age (see Figure 3). 
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Figure 3 

Different parameters for BMI estimation on an axial CT slice. The following parameters are drawn on 
the image: horizontal and anteroposterior diameters of the body (BTD, BAPD), the diameter of the 

vertebral body (L1APD), intraabdominal adipose tissue (IAA) and total body area (BA). 

We thought the original model was too complex therefore, we tried to simplify it. 
The BMIest depends on 4-5 data, and the dependence differs for both genders. 
Furthermore, it is questionable whether constants depend on the actual CT setting. 
In the literature, we found several additional BMI models [7], and we proposed nine 
new models based on the original and the current models and labelled them from I 
to IX (see Table 1). 

Table 1 
 Nine different models were created based on the original model for both sexes 

Model 
numbers Female models 

I BMImodel=-9.163+(0.252 ×BC)+ �10.621× 
SQA
BA

� -(0.081 ×age)+(0.597 ×BAPD) 

II BMImodel=a+(b ×BC)+ �c× 
SQA
BA

� -(d ×age)+(e ×BAPD) 

III BMImodel=2.069+(0.037 ×SQA)- (0.051× age)+(0.985 ×BTD)-(2.648 ×L1APD) 
IV BMImodel=a+(b ×SQA)- (c× age)+(d ×BTD)-(e ×L1APD) 
V BMImodel=a+(b ×BC) 
VI BMImodel=a+(b ×BTD)+ (c× BAPD) 
VII BMImodel=a+(b ×BC)+c ×age 
VIII BMImodel=a+(b ×BTD)+ (c× BAPD)+ (d ×BC) 
IX BMImodel=a+(b ×BTD)+ (c× BAPD)+ (c ×BC)+ (e ×age) 

Model 
numbers 

Male models 

I BMImodel=2.069+(0.037 ×SQA)- (0.051× age)+(0.985 ×BTD)-(2.648 ×L1APD) 
II BMImodel=a+(b ×SQA)- (c× age)+(d ×BTD)-(e ×L1APD) 
III BMImodel=-9.163+(0.252 ×BC)+ �10.621× 

SQA
BA

� -(0.081 ×age)+(0.597 ×BAPD) 

IV BMImodel=a+(b ×BC)+ (c×SQR)-(d ×age)+(e ×BAPD) 
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V BMImodel=a+(b ×BC) 
VI BMImodel=a+(b ×BTD)+ (c× BAPD) 
VII BMImodel=a+(b ×BC)+c ×age 
VIII BMImodel=a+(b ×BTD)+ (c× BAPD)+ (d ×BC) 
IX BMImodel=a+(b ×BTD)+ (c× BAPD)+ (c ×BC)+ (e ×age) 

We applied non-linear regression to calculate the coefficients of the nine equations 
where the following weight function was minimized for each case: 

ℎ(𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒) = ∑ (𝐵𝐵𝐵𝐵𝐵𝐵𝑘𝑘−𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵((𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒))𝑘𝑘)2𝑛𝑛
𝑘𝑘=1  (4) 

In Eq. 4, the BMI and BMImodel stand for the real and the model equation-based 
(presented in Table 1) BMIs, respectively. In addition, the sum runs over the whole 
male or female population (nfemale= 47, nmale= 51). 

Hypothesis tests for paired datasets were performed to compare the values obtained 
from different axial slices and different ranges. The distribution of the data was 
evaluated using the Anderson-Darling normality test. After that, the corresponding 
hypothesis test was chosen: paired t-test for normally distributed data and Wilcoxon 
signed-rank test for the rest. The datasets are considered significantly different if 
the p-value is smaller than 5%. 

All data evaluation and processing were performed using Microsoft Office EXCEL 
and MATLAB, commercially available programs. 

3 Results 

3.1 Influence of Segmentation on SAT and VAT Values 

AT data of all patients were separated according to gender, slice, X-ray exposure, 
type of adipose tissue, and applied range of HU during segmentation. First, we 
analyzed how the AT data obtained by the three segmentation methods are 
interrelated for gender and X-ray exposure. Figure 4 shows that the correlation 
coefficients are somewhat higher in the case of Protocol-I compared to Protocol-II 
for both subcutaneous fat and visceral fat AT data, furthermore, the correlations 
were independent of HU ranges. 
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Figure 4 

Correlation plots of SAT1-SAT2, SAT1-SAT3(a, c) and VAT1-VAT2, VAT1-VAT3 (b, d) for male 
and female subjects. Protocol-I was used in a, b and Protocol-II in c, d 

The role of the protocol is understandable since Protocol-I generates more photons 
that may be involved in imaging. Interestingly, the correlation coefficients and the 
regression equations are very similar for male and female patients. Although the 
correlations are close, all y axis intersections differ significantly from zero. 
Generally, the correlation between SATi values is closer as composed to those 
between VATi data. 

As a next step, hypothesis tests were performed to analyze how the predefined HU 
segmentation ranges influence the AT values obtained at different anatomical 
regions. Summary statistics for the hypothesis test are provided in Table 2. 

Table 2 
The resulting p values of the hypothesis test for paired subcutaneous and visceral adipose tissue data 

from different axial slices 

 VAT1, VAT2 VAT1, VAT3 VAT2, VAT3 
male, vertebra 5.14E-10 5.14E-10 4.17E-08 
male, left kidney 5.14E-10 5.15E-10 2.66E-07 
male, right kidney 5.14E-10 1.19E-28 1.31E-07 
female vertebra 4.09E-28 1.46E-26 5.77E-18 
female left kidney 3.31E-25 8.21E-25 7.24E-09 
female right 
kidney 

7.98E-23 1.12E-22 2.67E-15 

 SAT1, SAT2 SAT1, SAT3 SAT2, SAT3 
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male, vertebra 5.14E-10 2.77E-30 1.45E-05 
male, left kidney 5.14E-10 1.93E-30 5.24E-05 
male, right kidney 5.14E-10 1.41E-29 2.41E-05 
female vertebra 3.47E-26 2.33E-25 1.45E-05 
female left kidney 9.13E-28 4.95E-26 5.24E-05 
female right 
kidney 

1.85E-29 8.54E-28 7.23E-13 

3.2  Relation of SAT and VAT Data to Patient's Mass 

The interrelationship between the number of AT pixels and the patients' weight, or 
BMIs was also studied. Figure 5a and 5b presents data on the correlation between 
AT data and patients' weight. 

 
Figure 5 

The interrelationship between SAT or VAT and the weight, BMIest and BMI. Adipose tissue data 
determined with all three HU ranges are plotted. The regression equation, the R2 and p values are 

shown in each plot. 
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As expected, the AT pixel numbers increase as a function of body weight, but the 
correlation coefficients are rather low, especially for visceral fat. In addition, VAT 
and BMIest correlations (see Figure 5d) are definitely the lowest (r2=0.276, 
r2=0.416). The only exception is the correlation between SAT and BMIest for male 
subjects (r2=0.697) and female subjects (r2=0.691, shown in Figure 5c. SAT and 
VAT data are better correlated with real BMI data (Figure 5e, f) being characterized 
by r2 values similar to those in the correlation of AT data and real weight (Figure 
5a, b). Visceral data show a significantly poorer correlation in all cases. It can also 
be noted that the female body contains more subcutaneous fat, whereas men have 
more visceral fat. This can serve as useful information since visceral fat can function 
as an endocrine organ and produce various hormones [16]. These hormones may 
damage the body in different ways. 

3.3  Effect of X-Ray Exposure 

Correlation analysis was performed with data obtained from the investigation of the 
14 patients scanned using both protocols. The most critical difference between data 
using the two protocols, is the higher pixel number of the segmented adipose tissue 
regions yielded by Protocol-II (Figure 6). 

 
Figure 6 

Interrelationship between SAT and BMI based comparison of Protocol-I and Protocol-II.  
The numerical result of the regression (equation, the R2 and p values) are presented in each graph. 

The difference can be more than double. Displayed data also show a better 
correlation of AT data by Protocol-I with real BMI than Protocol-II, suggesting that 
the segmentation is more accurate if Protocol-I is applied. The correlation is high 
with the first protocol at real BMI (r2=0.74 and r2=0.606). The p value of regression 
analysis is almost zero (values are shown in Figure 6). Finally, it can be generally 
stated that the determination of subcutaneous adipose areas is more accurate with 
higher X-ray exposure. Plots of SAT and VAT versus body mass show an increase 
of adipose tissue with greater body mass, however, the interrelationship and the 
related correlations are less pronounced with Protocol-II (Protocol-I vs Protocol-II; 
SAT: r2 = 0.745 vs 0.248 and VAT: r2=0.606 vs 0.439). 
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3.4 Reliability of BMIest 

Additional correlation analysis was conducted to test the reliability of the formula 
used to calculate BMIest. The correlation between BMIest and real BMI data is 
displayed in Figure 7 for both male (r2=0.78 with p<0.001) and female patients 
(r2=0.841 with p<0.001) using data obtained by Protocol-I. 

 
Figure 7 

Correlation plot between BMI and BMIest. The resulted correlation parameters (equation, R2 and p) 
are also presented. 

3.5 Effect of Segmentation Levels 

In the study, we also examined the segmentation differences due to the three 
selected regions (L.1 vertebra, left and right kidney). The results are illustrated in 
Figures 8 and 9. High correlations are shown at both fat tissues by the large r2 value 
(Figs. 8 and 9) with a definite positive intersection at the Y axes. 
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The interrelationship between the VAT values originated from the L.1vertebra and the left and the 
right kidney 

 

Figure 9 
Correlation between the SAT values selected from L1 vertebra and left and right kidney 

 

Hypothesis tests were also performed to compare the AT values obtained from 
different axial regions (Table 3). 
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Table 3 
Summary of paired hypothesis test for subcutaneous and visceral adipose tissue data from different 

anatomical ranges. If p is larger than 0.05, the value is presented in red color 

 vertebra, left 
kidney 

vertebra, right 
kidney 

left kidney, 
right kidney 

male VAT1 1.82E-02 2.45E-02 2.69E-01 
male VAT2 3.18E-02 2.19E-02 4.59E-01 
male VAT3 2.83E-02 2.63E-02 3.03E-01 
female, VAT1 1.33E-01 2.52E-06 2.30E-06 
female, VAT2 1.74E-01 4.66E-06 4.82E-06 
female, VAT3 2.05E-01 4.85E-06 3.52E-06 

 
vertebra, left 

kidney 
vertebra, right 

kidney 
left kidney, 
right kidney 

male SAT1 7.06E-08 4.57E-06 8.52E-01 
male SAT2 5.95E-08 4.18E-06 8.62E-01 
male SAT3 3.75E-08 3.82E-06 8.11E-01 
female, SAT1 3.66E-01 3.23E-06 2.05E-07 
female, SAT2 3.48E-01 3.19E-06 1.93E-07 
female, SAT3 3.52E-01 2.72E-06 1.82E-07 

3.6 BMI Estimation by Models 

In this section, we show the BMIs calculated by the 9 different models and then 
compare them. Models are shown in Table 1. The constants of models (a, b, c, d, e) 
are estimated by non-linear regression, and the resulting values are presented in 
Table 4 for men (n=51) and Table 5 for women (n=47). 

Table 4 
Model parameters (a, b, c, d, e) are estimated by non-linear regression, and the estimated values are 

presented. The h is the resulting value of the weight function used in the non-linear regression. 

Male 
constants 

a b c d e h 

Model I 2.069 0.037 0.051 0.985 2.648 125.89 
Model II -18.275 0.010 3x10-5 1.116 -1.505 92.72 
Model III -9.163 0.253 10.621 0.081 0.597 616.80 
Model IV -0.26 0.114 2.9x10-4 0.021 0.489 97.30 
Model V -3.22 0.249 - - - 103.23 
Model VI -15.799 0.911 0.395 - - 80.46 

Model 
VII 

-3.19 0.248 2.8x10-4 - - 103.23 

Model 
VIII 

-12.75 0.844 3.3x10-4 0.092 - 85.04 

Model IX -13.42 0.900 3x10-4 0.085 -0.007 85.04 
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Table 5 
Parameters of female models (a, b, c, d, e) are estimated by non-linear regression, and the estimated 

values are presented. The h stands for the resulting value of the weight function 

Female 
constants 

a b c d e h 

Model I -9.163 0.253 10.621 0.081 0.597 390.14 
Model II -5.087 0.187 11.525 0.055 0.390 72.95 

Model III 2.069 0.037 0.051 0.985 2.648 91.68 
Model IV 0.110 0.014 0.045 0.953 1.114 65.26 
Model V -9.680 0.324 - - - 79.93 
Model VI -12.38 1.002 0.262 - - 72.56 
Model VII -7.500 0.334 -0.060 - - 71.23 
Model VIII -12.864 1.129 0.469 -0.082 - 71.48 
Model IX 0.002 0.234 0.001 0.208 -0.069 83.65 

In the last column of both tables, the value of the weight function of the non-linear 
regression (see Eq. 4) can also be seen. In general, the h value may depend on the 
number of cases and the goodness of the fitted model, thus we need to consider it 
when interpreting the results. Fortunately, our two groups contain almost the same 
number of cases, thus the h value will be comparable between the two gender 
groups. In the case of Table 4 the highest h value (meaning the worst model) belongs 
to Model III, which is the original model for the other sex (women). In this case, 
the h value is 616.8, approximately five times greater than Model I. The best model 
is Model VI, where only the AP and horizontal diameters are included. There are 
reduced differences among the remaining models, thus there is no need to use a 
complicated, multifactorial model for BMI estimation. The h values of women are 
in a similar range as those of men, which is probably explained by the similar 
number of patients in both groups (Table 5). The best h value belongs to Model IV 
(h=65.26) which is based on Model I of man. The worst case is Model I, which is 
the original model of women, and this conclusion is the same for both sexes. There 
are minor differences among the resting models, and especially Model VI-VIII are 
very close to each other because the h value differences are less than 1. Considering 
all models, the Model VI seems to be the most optimal for both genders because the 
h values are low and comprise only two distance data (BTD and BAPD). 

The results of correlation analysis between the model based and real BMI are 
presented in Figures 10 and 11, showing the data for men and women. 
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Figure 10 

Regression analysis between BMI (kg/m2) and models in the case of males, the regression data are in 
the table below the figure 

 
Figure 11 

Regression analysis between BMI (kg/m2) and models in the case of females; the regression data are in 
the table below the figure 
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The points overlap in both figures. Results of regression analysis are similar in all 
cases because all the regression coefficients are larger than 0.8, and the ranges for 
women and men are 0.828-0.880 and 0.838-0.899, respectively. In addition, all 
correlations were significant, which is explained by the small p values (< 0.001) in 
the hypothesis tests. 

Discussion 

Determination of the amount and localization of adipose tissue plays an essential 
role in several diseases [20]. Several study groups have developed methods to assay 
tissue volume and explore the interrelationship between bariatrics and the 
development of defined diseases. Davies and co-workers developed an application 
that can successfully calculate the amount of adipose tissue in polytraumatic 
patients from routinely used CT scans [6]. These methods may be helpful in 
intensive care units for COVID-19 patients because obesity is a major risk factor 
and may result in a worse prognosis, mostly among young patients [4] [26]. Sala 
and co-workers investigated the correlation between adipose tissue distribution and 
cardiometabolic diseases using adipose tissue volume and distribution data obtained 
from CT [22]. They applied an automatic tool that could recognize fat tissue and set 
the Hounsfield units of fat between -150 and -30 HU and the axial slices were 
selected from the level of the 5th lumbar vertebra. 

After the literature review, we did not find gold standard for the segmentation 
method. The accuracy of the segmented areas could only be verified quantitatively 
using phantoms, where the volume of adipose tissue or adipose tissue equivalent 
material in the phantom is known. Such a study was performed by Yoon et al. where 
they compared phantom and human CT and MR scans [9], however, in this study 
the main focus was the effect of varying tube current on segmentation. However, 
our results definitely show that image quality (influenced by the scan setup 
parameters), the chosen HU range and the segmentation region affect the final 
result. We applied the manual delineating technique and three previously published 
HU ranges to segment the visceral and subcutaneous areas in this study. Usually, 
part of the lumbal spine is the base for the adipose tissue determination, however 
some groups choose the level of the umbilicus [24]. In our study, adipose areas were 
measured on each slice acquired at the level of L1, hilar region of left and right 
kidney. We chose the hila of the kidneys because these are usually located between 
L1 and L3. The volume of subcutaneous and visceral adipose tissue was defined by 
these HU ranges using two different X-ray tube currents. We found that the volume 
of adipose tissue obtained with the higher X-ray tube current (Protocol-I) by 
segmentation based on different HU ranges was in good correlation (r2≥0.998) for 
both male and female subjects. Remarkable differences were detected between 
images and correlation analysis data applying different protocols. Images obtained 
with a lower (≈ 50 % lower) tube current were less reliable, and the correlations 
between the adipose tissue volume data segmented using different segmentation 
procedures were not as close as between those obtained with a larger tube current 
(r2>0.967). Troschel and co-workers showed a similar tendency [3] changing the 
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tube current–exposure time product values in their work. In Table 2, we presented 
the p values for the hypothesis test, which investigated the possible effect between 
the segmented AT areas and predefined HU ranges at each possible region (L1 
vertebra, right and left kidney level). It is visible that all p values are less than 0.05, 
thus it can be stated that the three different HU ranges of the segmentation affect 
the amount of adipose tissue segmented. This does not contradict the fact that the 
different AT values correlate well for each HU range, as the correlation equations' 
axis intercept is not zero (Fig. 4). Thus, the segmented AT values obtained with the 
three distinct HU ranges are not proportional to each other, only an excellent linear 
relationship is between them. 

We were also curious about how the extent of segmented AT pixels is affected by 
the preselected anatomical areas (L1 vertebra, left and right kidney). The results are 
presented in Figures 8 and 9. Good correlations and linear relationships could be 
observed among each ATs, with non-zero intersections of the linear equations in 
every analysis. The results of the associated hypothesis tests are demonstrated in 
Table 3, where the p value was larger than 0.05 the text was colored in red. In the 
case of male and both adipose tissues, there were no significant differences between 
the right and left kidney level (VAT: p>0.269, p>0.4591, p>0.303, SAT: p>0.852, 
0.862, 0.811), while in the case of female the vertebra and left kidney region gave 
same result (p>0.133, p>0.174, p>0.205, SAT: 0.3663, 0.348, 0.352. In all other 
cases, there is a difference between the segmented SAT and VAT values. 

In the last step, we examined the relationship between the amount of segmented 
adipose tissues and the measured and estimated body shape BMI parameters.  
The highest correlation between segmented volume and BMIest was found with  
r2 = 0.69 for male and female data. Comparison of the same parameters using a high 
and a low tube current protocol resulted in significant dissimilarities.  
The correlation between SAT and BMIest was characterized with r2 = 0.7445 using 
Protocol-I and r2 = 0.2477 using Protocol-II. Correlation coefficients between 
segmented adipose tissue and BMI or BMIest are closer if we use images obtained 
by the higher tube current. Studying CV data of SAT and VAT data revealed that 
the volume of both kinds of adipose tissue can be estimated with a CV≤ 10 % if the 
axial slice is chosen from a 5 cm wide area of the lumbal region. 

CT-based determination of body mass index can be useful in two cases. One is in 
clinical practice, when the patient is unconscious and height and weight data are 
unavailable. The other is in research where no BMI or other anthropometric data 
are available. The latter was the case in an article by O'Leary and colleagues 
published in 2012. In their research, they performed adipose tissue segmentation in 
patients with severe acute pancreatitis without anthropometric data, so they used the 
BMI estimator model created by Geraghty and colleagues in 2003. In Geraghty's 
study, in addition to BMI, height, weight and body surface area were estimated 
using a single abdominal CT image. 
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Analyzing the nine proposed BMI models, we found that the calculated BMIest 
values agreed with the real BMI data (males: r2 = 0.7802, females: r2 = 0.841), and 
7 out of the 9 models gave excellent accuracy to estimate the body shape.  
In addition, we found that having these seven models, the simpler ones (V, VI and 
VII) gave similar reliability to the original equations (I and III), so it follows that 
there is no need to use a complex, multifactorial model for BMI estimation. 

There are some limitations to our study. First, based on the previous article, we 
selected the slices including the L1 [1] [8] and hila of the kidneys for adipose tissue 
segmentation. At the same time, other authors prefer L2-L3 or the level of umbilicus 
as reference [21, 24, 32]. The second limitation was the relatively few numbers of 
patients involved in Protocol-II. Third, we did not utilize an automatic method for 
segmentation, a better way could be to develop an algorithm to reduce the adipose 
tissue segmentation time. However, the segmentation time was not a critical aspect 
of our study. Finally, our study did not investigate the effects of other setting 
parameters on segmentation, such as the reconstruction kernel or slice thickness. 

Conclusions 

As three specific objectives have been identified in the introduction, we can state 
the following: 

i) In our study, we found a good correlation between the three HU ranges, 
without proportionality, thus, the segmented SAT and VAT areas are actually 
different. 

ii) The chosen anatomical level of segmentation significantly affects the VAT 
and SAT values. 

iii) For the 98 patients, model-based BMI and real BMI were determined and 
compared. 

We have simplified the model-based BMI estimation and as a result, we have shown 
that a complex multivariate model is not necessary, for CT-based BMI calculations. 
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