
Acta Polytechnica Hungarica Vol. 22, No. 12, 2025 

 – 159 – 

Impact of Weather Conditions on Electric 
Vehicle Charging Behavior in an Office Context 
in Hungary 

Istvan Szucs 
Doctoral School of Applied Informatics and Applied Mathematics, Obuda 
University, Bécsi út 96/B, 1034 Budapest, Hungary; szucs.istvan@uni-obuda.hu 

Marta Takacs 
John von Neumann Faculty of Informatics, Obuda University, Bécsi út 96/B, 1034 
Budapest, Hungary; takacs.marta@nik.uni-obuda.hu 

Jozsef Kopjak, Gergely Sebestyen 
Kando Kalman Faculty of Electrical Engineering, Obuda University, Bécsi út 
96/B, 1034 Budapest, Hungary; kopjak.jozsef@kvk.uni-obuda.hu; 
sebestyen.gergely@uni-obuda.hu 

Abstract: This paper explores the impact of weather conditions ‒ particularly ambient 
temperature ‒ on electric vehicle (EV) charging behavior in an office environment in 
Hungary. Real-world data from AC chargers and local weather records were used to 
analyze how temperature affects energy consumption and charging patterns. The analysis 
focused on energy demand and session frequency across varying temperature ranges. 
Results indicate that colder conditions lead to increased energy consumption, while session 
frequency remains relatively stable. These findings highlight that the rise in energy demand 
is primarily driven by higher consumption per session rather than more frequent charging. 
The study offers insights that can support more accurate demand forecasting. 
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1 Introduction 

The number of electric vehicles (EVs) is rapidly increasing, making optimal load 
management of EV chargers more critical than ever. Load management refers to 
the efficient distribution of available electrical power among multiple chargers to 
prevent system overloads (e.g., tripped fuses) and maintain a high Quality of 
Service (QoS). A load management system can be optimized with various 
objectives in mind, including efficient utilization of the power distribution grid, 
cost reduction, or simply meeting user demands regardless of the cost. Achieving 
such optimization requires comprehensive knowledge of all variables influencing 
the system. 

This paper investigates how weather condition ‒ particularly ambient temperature 
‒ affect EV charging behavior in a real-world office environment in Hungary.  
The primary objective is to first study the related literature in order to build a solid 
understanding of existing research in the field. This will guide the development of 
our own analysis, allowing for a comparison between our findings and those 
previously reported. Through this comparative approach, the goal is to highlight 
consistencies and deviations in user behavior under varying temperature 
conditions, ultimately demonstrating that temperature data is a critical factor to be 
considered in the local load management of EV chargers. 

The paper is structured as follows: Section II reviews the most relevant related 
work concerning weather effects on EV charging and grid demand. Section III 
describes the datasets and methodology used in our analysis. Section IV presents 
the results of our empirical study, focusing on temperature- related variations in 
energy consumption, session frequency and session count. Finally, Section V 
draws conclusions and suggests implications for future forecasting and load 
management strategies. 

2 Related Works 

In general, weather has a significant influence on energy demand, and the same is 
observed for electric vehicles (EVs). The authors of [1] state that in cold weather, 
the energy needs of an EV increase due to the (pre)heating of the cabin and the 
heating of the battery pack to maintain its optimal operating temperature and the 
driver’s comfort. Additionally, due to other chemical effects discussed in [2], cold 
weather can reduce the available energy stored in the battery even without 
auxiliary loads. 
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2.1 Grid-Level Impacts and Their Causes 

Multiple studies quantify the additional strain on the grid caused by weather-
sensitive EV charging. Cold weather has been shown to raise peak load demands 
due to both increased charging frequency and longer charging durations. A UK- 
based Monte Carlo simulation by [1] demonstrated that national EV demand could 
rise by 630 MW during cold spells, leading to significant pressure on generation 
capacity and grid stability. 

Similarly, [3] simulated the charging behavior of 11 million (as 11 million EVs is 
assumed to be on the roads by 2030) EVs under extreme winter conditions, 
concluding that an additional 450 MW of generation would be required. This 
study also noted a shift toward higher carbon intensity, as fossil-fuel generation 
often compensates for the increased demand. 

On a more localized scale, [4] and [5] found that uncoordinated cold-weather EV 
charging clusters could overload distribution transformers, shortening their 
lifespan to less than one year in worst-case scenarios. 

2.2 EV Charging Behavior and Its Consequences 

From a behavioral perspective, ambient temperature influences both the timing 
and frequency of EV charging. [6] showed that EVs consume approximately 2.4 
kWh/100 km more for every 5°C drop below 10°C. This increased demand not 
only impacts vehicle range but also changes charging patterns, typically resulting 
in longer and more frequent sessions. 

Furthermore, EV users tend to adapt their schedules based on weather conditions. 
Authors of [7] integrated weather and traffic data into machine learning models 
and demonstrated a significant improvement in predicting session duration and 
energy usage. This underscores that cold temperatures are a critical variable in 
accurately modeling and forecasting EV charging behavior. 

Other works, such as [8], emphasize that incorporating temperature data into 
short-term load forecasting improves grid readiness and infrastructure 
management, particularly during seasonal transitions. Additional supporting 
analysis from [3] further highlights grid-level risks under extreme winter charging 
conditions. 

2.3 EV User Patterns and Grid Demand in Hungary 

In Hungary, the annual mean temperature range spans approximately 30-40°C, 
with winter minimums falling below 0°C and summer highs reaching around 30°C 
[9]. A comparable climate was studied in the Umbria region of Italy in [6], which 
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demonstrated that EV energy consumption increases by approximately 2.4 
kWh/100 km for every 5°C decrease in ambient temperature. 

Furthermore, workplace EV charging data from Budapest reveals a distinct daily 
peak in charging activity between 7-8 AM—coinciding with the start of the 
workday and the broader morning load peak on the national grid [10]. Since 
colder temperatures both increase energy demand per vehicle and influence 
charging behavior, the early-morning demand spike can compound strain on 
already loaded grid infrastructure. 

This convergence highlights the critical need for intelligent load management 
strategies, particularly during winter months when ambient temperatures drop and 
solar PV output is minimal in the early hours. Recent studies emphasize that 
properly designed demand-side management (DSM) and predictive scheduling, 
especially using user-specific behavior models and weather-informed forecasting, 
are key to maintaining grid stability under these conditions [11] [12] [13]. 

3 Methodology 

For this research, two datasets were utilized: one containing electric vehicle (EV) 
charging session data and another comprising local weather measurements 
corresponding to the same time frame. 

3.1 EV Dataset 

To analyze electric vehicle charging behavior in response to environmental 
conditions, a dataset was collected from an office building equipped with 23 AC 
chargers, each capable of delivering up to 22 kW. These chargers are currently un- 
controlled, meaning that charging power is solely regulated by the vehicle’s 
internal charging system. The user base for this infrastructure consists of 59 
registered EV drivers. 

Communication between the charging stations and the backend system is handled 
via the Open Charge Point Protocol (OCPP), an industry-standard protocol 
designed for EV chargers. OCPP operates over WebSocket using JSON- 
formatted messages. This protocol enables user authentication, charging session 
control, and data reporting [14]. During an active charging session, each charger 
transmits MeterValues messages at one-minute intervals. These reports include 
realtime metrics such as charging power, current, and cumulative energy 
delivered. 

All OCPP communications are routed through a centralized backend system, 
which extracts relevant user and session data and forwards it to an IoT platform 
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(Thingsboard). This platform serves both as a telemetry database and a monitoring 
interface. It also provides integrated support for user authentication and access 
control, which was implemented via REST API due to its simplicity and wide 
support. 

 
Figure 1 

Simplified architecture of the system [10] 

An overview of the system architecture is illustrated in Fig. 1. highlighting the 
connections between chargers, the OCPP server, the telemetry database. 

Two key attributes were used from the dataset: deltaEnergy and sessionDuration 

• sessionDuration indicates the total time the EV was connected to the 
charger. This includes not only the active charging period but also any 
idle time when the vehicle remained plugged in without drawing power. 

• deltaEnergy represents the actual amount of energy delivered to the EV’s 
battery, measured in kilowatt-hours (kWh). 

3.2 Weather Dataset 

The weather data was obtained from the Hungarian Meteorological Service, which 
provides access to historical weather records for free of charge [15]. For this 
analysis, the daily average temperature was primarily used as the key variable. 

The two datasets were combined based on overlapping time intervals. The start 
date was determined by the EV charging dataset, which begins on June 29, 2024, 
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while the end date was set by the availability of the weather data, which extended 
until February 28, 2025. We assumed all users were located near the office 
building and, accordingly, used weather data from the nearest stations to the 
chargers. 

3.3 Data Analysis 

For data analysis a Python library called NumPy was used that is an open source 
scientific library in Python [16]. 

The dataset contains some dummy charging sessions, where the user repeatedly 
started charging sessions within a short time period. These sessions are easily 
identifiable: the deltaEnergy parameter is typically 0, and the sessionDuration is 
very short. This user error can lead to inaccurate results, so a filter must be applied 
to the dataset: only sessions with a deltaEnergy value greater than 0 are accepted. 
Beside this, we also excluded users that have a charging record count less than 10, 
and sessionDuration longer than one day. 

4 Results 

First, we examined whether there is a correlation between temperature data and 
deltaEnergy. Based on related work, our assumption was that as temperature 
decreases, deltaEnergy increases. This assumption was supported by the data: for 
most users, the correlation between temperature and deltaEnergy was weak to 
moderate and negative (ranging from -0.004 to -0.55). Some users, however, 
showed a positive correlation, likely due to an insufficient amount of charging 
session data. 

A negative correlation between temperature and charged energy was observed in 
81.48% of users, suggesting that energy demand tends to decrease as temperatures 
rise. In Fig. 2, the weekly average energy consumption of users is shown as a 
function of weekly average temperature. A clear increase in energy demand can be 
observed at temperatures below approximately 10°C. 

In numerical terms, the average energy consumption difference between values 
below and above 10°C threshold is as follows: 

• The energy demand increased for 65.45% of the users at temperatures 
below 10°C. 

• 27.27% of users showed a decrease in energy demand in colder 
conditions. 

• 7.27% of users had insufficient data (i.e., no charging sessions in either 
the cold or warm period). 
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• For users whose energy demand increased, the average growth was 6.25 
kWh. 

• For users whose energy demand decreased, the average reduction was 
2.49 kWh. 

 
Figure 2 

Average weekly energy need vs. average weekly temperature 

Some individual users’ data were also examined. We fitted both linear and third-
order polynomial models to each user’s data points, this can be seen in Figure 3. 
The resulting models show that the intercepts vary, due to differences in battery 
capacities, while the slopes reflect trends in energy consumption relative to the 
independent variable. 

However, in most cases, the coefficient of determination (R2) was relatively low 
even when using actual (non- averaged) data instead of weekly averages. The R2 
values are indicated in the legends. These plots clearly demonstrate high variance 
in the data, resulting in poor model fits. Consequently, the regression curves may 
not yield reliable or meaningful predictions. 
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Figure 3 

Individuals’ average weekly energy consumptions vs. average weekly temperature 

To determine whether the increased energy demand in colder temperatures is due 
to higher energy consumption per session or simply more frequent charging, we 
examined the average session count. As shown in Fig. 4 the average number of 
sessions per week does not differ significantly above and below the threshold.  
The overall change in session count is minimal, with both increases and decreases 
observed among users. 

 
Figure 4 

Average weekly session count vs. average weekly temperature 
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In Fig. 5 some examples of individual users’ charging session count can be 
observed. In most cases, the average session count shows similarity in both cold 
and warm weather. 

 
Figure 5 

Average weekly session count vs. average weekly temperature 

Compared to the previous results of delta energy, the session count is divergent: 

• The session count increased for 50.9% of the users at temperatures below 
10°C. 

• 41.82% of users showed a decrease in session count in colder conditions. 
• 7.27% of users had insufficient data (i.e., no charging sessions in either 

the cold or warm period). 
• For users whose session count increased, the average growth was 0.42 

sessions per week. 
• For users whose session count decreased, the average reduction was 0.49 

sessions per week. 

Finally, we examined how the session duration depends on the temperature, this is 
illustrated in Fig. 6. As session duration is not equal to the charging time, we 
expect that session duration will bring the same tendency like the session count, 
there will be no significant change. If we calculate the differences beneath and 
over the 10°C threshold value we got the following results: 

• 63.64% of users had an increase in session duration in cold weather. 
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• 29.09% of users had a decrease in session duration in cold weather. 
• 7.27% of users had insufficient data to evaluate session duration changes. 
• Among users with increased session duration, the average growth was 

68.97 minutes. 
• Among users with decreased session duration, the average reduction was 

43.33 minutes. 

 

 
Figure 6 

Average weekly session duration vs. average weekly temperature 

On the plot we can see that in case of some users, the session duration is 
significantly increased, but for the rest it is basically remained the same. 

Conclusion 

This study examined the relationship between ambient temperature and EV 
charging behavior in an office environment in Hungary. The results consistently 
showed that colder temperatures lead to increased energy consumption per 
session, while the frequency of charging sessions remains largely unchanged. This 
is consistent with previous studies from the related literature, where increased 
energy demand in cold weather is attributed to battery heating and cabin 
conditioning requirements [1], [2], [6]. None of the related works explicitly 
examine the impact of weather on the number of charging sessions. However, our 
findings suggest that in fixed-schedule office environments, increased demand due 
to cold weather is reflected primarily in higher energy per session rather than an 
increased number of sessions. 
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Furthermore, our findings reinforce conclusions from other research efforts [7], 
[8], which demonstrated that incorporating temperature data into forecasting 
models improves predictive accuracy. In our case, this holds true even in a 
localized and behaviorally stable environment, such as a workplace charging 
scenario. 

Given the significant influence of temperature on energy consumption, it is 
evident that weather conditions ‒ especially temperature ‒ should be factored into 
EV load management systems. Doing so not only improves forecasting and 
scheduling but also helps mitigate risks of grid overload during cold periods. 
These insights underscore the importance of weather-aware demand-side 
management strategies in both local and national grid contexts. 
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