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Abstract: This paper introduces the utilization of the latest small You Only Look Once version 
8 – YOLOv8s convolutional neural network in an automatic electric vehicle charging 
application study. The employment of a deep learning-based object detector is a novel and 
significant aspect in robotic applications, since it is both, the initial and the fundamental step 
in a series of robotic operations, where the intent is to detect and locate the charging socket 
on the vehicle’s body surface. The aim was to use a renowned and reliable object detector to 
ensure the reliable and smooth functioning of the deployed robotic vision system in an 
industrial environment. The experiments demonstrated that the deployed YOLOv8s model 
detects the charging socket successfully under various image capturing conditions, with a 
detection rate of 97.23%. 

Keywords: YOLOv8s; Electric vehicle charging socket; Image processing; Object detection; 
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1 Introduction 
Electric vehicles (EVs) are electrifying the transportation landscape, projected to 
dominate roads worldwide [1-4]. The accelerated advancement of electric vehicles 
will lead to a growing demand for associated applications in the coming years. [4-
6]. Robotic charging represents a crucial step towards seamless and user-friendly 
electric vehicle charging. This technological leap provides the basis for a future 
where recharging becomes effortless and efficient, further propelling the electric 
mobility revolution [7-8]. Seamless, hands-free charging is electrifying the future 
of EVs. As customer demand rises and autonomous driving advances, automated 
charging robots are prepared to revolutionize the recharging experience. 

This initial study investigates the application of object detection techniques in a 
robotic charging system for electric vehicles within an automotive project. As a 
result, a novel approach for electric vehicle charging socket detection using the 
novel state-of-the-art You Only Look Once version 8 (YOLOv8) [9] object 
detection framework will be introduced. 

The main task of this research is the deployment of a lightweight and efficient object 
detector for the detection of the Combined Charging System 2 (CCS2) socket of 
electric vehicles using a renowned and reliable object detector model. Thus, the 
socket detection procedure in complex image scenes is based on the latest YOLOv8 
framework introduced in 2023 by Ultralytics, which is the sequel of the earlier 
versions of well known YOLO object detectors. The main demand of this job is to 
initially detect the charging socket in compound scenes in order, that in the later 
stage of the operation, the robotic arm with a specialized short range 3D camera 
will approach the detected socket in order to accurately determine its position in 
space. Further, one of the main project requirements was to use a well known, 
reliable and fast object detector framework intending to ensure the smooth operation 
of the whole system. It should be noted, that in the subsequent stages, the Universal 
Robot 10e (UR10e) equipped with a built-in force-torque sensor will be employed 
as the robotic arm for the implementation of an autonomous charging application 
[1-3]. A comprehensive description of the robot and its operations falls outside the 
scope of this paper, a complete exploration will be provided in a separate 
publication. 

Finally, the developed YOLOv8-based procedure successfully fulfilled the project's 
objectives, demonstrating accurate and reliable CCS2 socket detection. 

This research contributes significantly to industrial research by developing a novel, 
trained, and reliable object detector for charging socket detections in automated EV 
charging applications. Notably, using YOLOv8 for this purpose is unreported in 
both, scientific literature and industrial research projects focused on charging socket 
detection. This new approach offers a promising solution to a key challenge in 
upcoming industrial EV charging applications. 
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The paper can be summarized as follows. The first section is the introduction, the 
second section is the literature overview, the third section introduces the YOLOv8 
framework and the proposed method. Section four shows the experiments and 
results. Finally, the conclusions are drawn with the future works plan. 

2 Related Works 
Isolating individual objects from cluttered scenes and pinpointing their location 
remains a key challenge for robot vision systems [15-26]. Object segmentation, 
critical for isolating specific shapes, suffers from a research gap in EV charging 
socket detection [27-36]. YOLOv8's popularity in building accurate, precise, and 
flexible object detectors makes it a promising candidate for addressing this gap. 
This work leverages YOLOv8's broad applicability and acceptable speed to develop 
a novel solution for EV charging socket detection. This section will provide a 
concise overview of the relevant studies in this domain, however the description of 
YOLOv8 is poorly represented in the scientific literature. 

Hussain [37] delves into the YOLO family's evolution, from its inception to the 
latest YOLOv8, analyzing its architectural strengths within the industrial context. 
Slimani et al. [38] leveraged YOLOv8 for efficient and precise rust disease 
classification in fava bean field images. Their transfer learning-based model 
outperformed others, achieving an impressive 95.1% detection accuracy. Sharma et 
al. [39] present a real-time parking violation detection system using YOLOv8 for 
vehicle identification and a tracking algorithm for persistence. Future work will 
explore multi-camera synchronization. Talaat and ZainEldin [40] leverage 
YOLOv8's deep learning strengths for a real-time, camera-based fire detection 
system in smart cities, achieving a state-of-the-art 97.1% precision rate. Bai et al. 
[41] comprehensively investigated YOLOv8n object detection improvements, 
integrating Wasserstein Distance Loss, FasterNext, and Context Aggravation. They 
individually and collectively evaluated each approach, demonstrating YOLOv8n's 
superior balance between accuracy, complexity, and inference speed compared to 
other frameworks. Finally, it should be noted, that numerous deep learning models 
[38-44] are analyzed and tested in recent years for various applications and the 
development of many deep learning models is expected in the upcoming period. 

 

 

 

 



V. Tadic et al.   Electric Vehicle Charging Socket Detection using YOLOv8s Model 

‒ 124 ‒ 

3 Methods 

3.1 YOLOv8 Framework 
Launched in 2023, YOLOv8 takes object detection and image segmentation to the 
next level. While comprehensive documentation awaits, Ultralytics offers essential 
info on the framework and architecture. 

YOLOv8 redefines object detection with unmatched speed and precision, thanks to 
cutting-edge deep learning and computer vision [45]. Unlike the Region-based 
Convolutional Neural Network (R-CNN) and Fast R-CNN models, which use a 
multi-stage process to detect objects in image, all YOLO models use a single neural 
network (single shot detection) to predict both, the bounding boxes and class 
probabilities of objects in images [46]. Trading accuracy for speed, YOLO excels 
in real-time tasks, potentially requiring slight adjustments for optimal accuracy in 
some scenarios [46]. YOLO models employ direct prediction of class probabilities 
and bounding boxes, obviating the need for region proposal algorithms. This single-
stage architecture facilitates object detection in a single network pass, leading to 
significant speed advantages compared to multi-stage approaches [45-46]. YOLO 
adopts a grid-based approach, dividing the input image into cells and predicting 
object presence within each. Each cell subsequently predicts bounding boxes and 
class probabilities for potential objects within its bounds, facilitating multi-object 
and multi-scale detection in a single pass [37], [46]. 

YOLOv8 can be used for the three main computer vision tasks: 

1. Classification; where the objective of the object detector model is to 
determine the predominant class present in the input image. 

2. Object detection; where the goal is to not only identify various classes 
within an image, but also to precisely locate them inside the image. 

3. Segmentation; where the goal is to identify individual pixels belonging to 
each object in the image. 

Earlier YOLO models use anchor boxes [45], which are predefined bounding boxes 
in order to enhance the accuracy of its predictions. YOLOv8 departs from 
traditional anchor-based methods, directly predicting bounding box centers and 
class probabilities for objects within the input image [45]. This anchor-free 
architecture eliminates the need for predefined anchor boxes, simplifying the model 
and enabling greater flexibility in detecting objects of diverse sizes and aspect 
ratios. Additionally, reduced box predictions enhance Non-Maximum Suppression 
(NMS) efficiency, a post-processing step critical for accurate object localization 
[45-46].  

YOLOv8 distinguishes itself by leveraging the powerful mosaic augmentation 
technique [45]. Data augmentation artificially expands training data through 
manipulation of existing samples, enhancing model robustness and generalizability. 
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One of the well-known and powerful annotation and augmentation tools is the 
Roboflow Framework [47] that is used in this research. While mosaic augmentation 
offers significant advantages, YOLOv8 strategically disables it during the final 10 
training epochs [45]. This fine-tuning step allows the model to focus on the original 
data distribution, potentially mitigating performance decline observed with 
prolonged mosaic augmentation [45].  

The activation function used in YOLOv8 is the Sigmoid Linear Unit (SiLU) 
function [45-46]: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥) = 𝑥𝑥𝑥𝑥(𝑥𝑥)                                                                                           (1) 

where the 𝜎𝜎(𝑥𝑥) is the Sigmoid function defined as [46]: 

𝜎𝜎(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

                                                                                                         (2) 

The activation function plays a prominent role in determining whether a neuron 
should be activated, or not. It is accomplish by computing the weighted sum and 
incorporating bias. The primary goal of the activation function is to inject non-
linearity into the neuron's output [45-46, 48]. 

Further, the loss of the YOLOv8 model is obtained with two functions, the Binary 
Cross Entropy (BCE) calculates the classification loss, while for the bounding box 
loss the Complete Intersection over Union (CIoU) and the Distribution Focal Loss 
(DFL) is calculated [46, 48]. A loss function serves as a metric to evaluate the 
disparity between the predicted and target output values, quantifying how 
efficiently the neural net represents the training data. During the training procedure, 
the aim is to minimize this loss, thereby enhancing the network's ability to 
accurately predict target outputs [45-46, 48]. 

The BCE and CIoU functions are defined as: 

𝐵𝐵𝐵𝐵𝐵𝐵 = − 1
𝑁𝑁
∑ 𝑦𝑦𝑖𝑖 log�𝑝𝑝(𝑦𝑦𝑖𝑖)� + (1 − 𝑦𝑦𝑖𝑖)log (1 − 𝑝𝑝(𝑦𝑦𝑖𝑖))𝑁𝑁
𝑖𝑖=1                                   (3) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1 − 𝐼𝐼𝐼𝐼𝐼𝐼 + �𝜌𝜌
2�𝑏𝑏,𝑏𝑏𝑔𝑔𝑔𝑔�
𝑐𝑐2

� + 𝛽𝛽𝛽𝛽                                                                      (4) 

where b and bgt are the central point of the predicted bounding box B and the central 
point of the ground-truth box Bgt, where gt labels the ground-truth and N is the 
number of object classes. The 𝜌𝜌 parameter represents the Euclidean distance, 𝑦𝑦 ∈
{1,0} specifies the ground-truth class, 𝑝𝑝 ∈ [0,1] is the probality for the class label 
𝑦𝑦 = 1 and c represents the diagonal length of the smallest enclosing box that masks 
the two boxes [46, 48]. The 𝛽𝛽 parameter labels the trade-off and the v parameter 
measures the consistency of the aspect ratio. The v and 𝛽𝛽 are represented as follows 
[46]: 

𝑣𝑣 = 4
𝜋𝜋

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑔𝑔𝑔𝑔

ℎ𝑔𝑔𝑔𝑔
− 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤

ℎ
)2                                                                          (5) 

𝛽𝛽 = 𝑣𝑣
1−𝐼𝐼𝐼𝐼𝐼𝐼+𝑣𝑣

                                                                                                           (6) 
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where w and h are the width and the height of the bounding box respectively.  
The Intersection over Union (IoU) is obtained with the predicted bounding box B 
and the ground-truth box Bgt with the following equation [46]: 

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐵𝐵∩𝐵𝐵𝑔𝑔𝑔𝑔

𝐵𝐵∪𝐵𝐵𝑔𝑔𝑔𝑔
                                                                                                           (7) 

The CIoU in equation (4) considers the overlapping area, the aspect ratio and the 
central point distance into account. It is an ameliorated variant of IoU, and its  
consequence is, that it converges faster and it is more effective in executing the 
bounding box regression [45-46]. 

Further, the problem with a classic loss functions such as the BCE loss function is 
that suchlike functions handle the missclassifications equally. In the object 
detection task this can be an issue since the huge majority of the image regions do 
not contain any object/shape and this could lead to a class inequity problem. Thus, 
the focal loss function handles this issue by down-weighting the loss allotted to 
well-classified samples. Further, the DFL is built upon by including the class 
distribution information into the focal loss function. The goal is to learn a dynamic 
weighting scheme for the loss function built on the distribution of classes in the 
training data. This permits the YOLOv8 model to assign more weights to the low-
represented classes and less weights to the over-represented classes which can lead 
to more precise bounding box assessment [46, 48]. 

When the continuous distribution of the regression value is transforred to the 
discrete domain, the assessed regression value can be expressed as follows [46]: 

𝑦𝑦� = ∑ 𝑃𝑃(𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=0 𝑦𝑦𝑖𝑖                                                                                                  (8) 

where the 𝑦𝑦� is the estimated regression value and the n is the number of classes in 
this case. 

Using the Softmax functions [48]: 

𝑆𝑆𝑖𝑖 = 𝑦𝑦𝑖𝑖+1−𝑦𝑦
𝑦𝑦𝑖𝑖+1−𝑦𝑦𝑖𝑖

                                                                                                            (9) 

𝑆𝑆𝑖𝑖+1 = 𝑦𝑦−𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖+1−𝑦𝑦𝑖𝑖

                                                                                                       (10) 

𝑦𝑦� can be written as follows [46,48]: 

𝑦𝑦� = ∑ 𝑃𝑃(𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=0 𝑦𝑦𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑦𝑦𝑖𝑖 + 𝑆𝑆𝑖𝑖+1𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖+1−𝑦𝑦

𝑦𝑦𝑖𝑖+1−𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖 + 𝑦𝑦−𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖+1−𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖+1=y                  (11) 

Finally, the DFL can be expressed as [46, 48]: 

𝐷𝐷𝐷𝐷𝐷𝐷(𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1) = ((𝑦𝑦𝑖𝑖+1 − 𝑦𝑦)(𝑆𝑆𝑖𝑖) + (𝑦𝑦 − 𝑦𝑦𝑖𝑖)log (𝑆𝑆𝑖𝑖+1))                                    (12) 

As an estimation metric, the image recognition community decided to use the mean 
Average Precision (mAP) for object detector models [45-46]. The mAP is a 
combination of recall and precision values determined over multiple confidence 
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thresholds, the IoU.  The variation of the IoU threshold will result in different True 
Positives (TP) and False Positives (FP) predictions in image. 

The precision is determined as the fraction of TP detections among all detections 
made at a specific IoU threshold [46]: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                                                                              (13) 

The recall is determined as the fraction of TP detections found among all possible 
detections made at a specific threshold [46]: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                                                                                   (14) 

where FN are False Negatives predictions in the image. 

Finally, the formula for mAP is determined as [46]: 

𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑁𝑁
∑ 𝐴𝐴𝐴𝐴𝑖𝑖𝑁𝑁
𝑛𝑛=1                                                                                               (15) 

where APi is the average precision for the i-th class and N is the number of object 
classes. 

The architecture of YOLOv8 is built upon the previous models of YOLO object 
detectors. The description of the YOLOv8 model architecture is provided by 
RangeKing [49]. The architecture is presented in Figure 1. At the core of YOLOv8 
lies a convolutional neural network (CNN) architected into two distinct modules: 
the feature extraction backbone and the object detection head [45-49].  
The backbone leverages a modified variant of the Cross Stage Partial (CSP) 
Darknet53 architecture, comprising 53 convolutional layers and specializing in 
extracting salient features from the input image [45, 49]. The CSP architecture 
employed in the backbone facilitates robust information flow by introducing cross-
stage partial connections between network layers [45, 49]. Following this, the 
YOLOv8 head comprises a cascade of convolutional layers culminating in a 
sequence of fully connected layers. These layers work in tandem to perform critical 
object detection tasks [45, 49]. YOLOv8 distinguishes itself by incorporating a self-
attention mechanism within its head [45, 49]. This mechanism endows the model 
with the ability to dynamically attend to different regions of the input image, 
selectively allocating emphasis to features based on their pertinence to the object 
detection task [45, 49]. YOLOv8 further distinguishes itself by its multi-scale object 
detection capability. This is achieved through its integration of a feature pyramid 
network (FPN), which enables the model to effectively localize objects across a 
wide range of sizes and scales within the input image. The FPN architecture 
comprises multiple feature levels, each specializing in the detection of objects at 
specific scales. This allows YOLOv8 to simultaneously identify both large and 
minute objects present in the image, leading to comprehensive and accurate 
detection performance [45, 49]. 
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Figure 1 

YOLOv8 model architecture (provided by RangeKing [48]) 

Further, YOLOv8 supports five different neural network sizes that vary in the 
amount of parameters present in the neural network: YOLOv8n (n-nano), 
YOLOv8s (s-small), YOLOv8m (m-medium), YOLOv8l (l-large) and YOLOv8x 
(x-extra large) [45]. The “n” model has the smallest number of parameters, while 
the “x” model has the largest number of parameters. The parameters are referring 
on the number of biases and weights in the network [45-49]. While YOLOv8n is 
the smallest and the fastest model, on the other hand the YOLOv8x is the most 
accurate and slowest among the YOLOv8 models. Based on the requirements of the 
application itself, the appropriate model could be selected [45]. Since the aim of the 
research is to detect the charging socket of the e-vehicle with reliable accuracy in a 
short time, the YOLOv8s model has been chosen to accomplish this task. According 
to Ultralytics test on Microsoft Common Objects in Context (MS COCO) dataset 
[45-48], the YOLOv8s model is to a lesser extent slower than the YOLOv8n model, 
and it is significantly faster than the other YOLOv8 models according to Open 
Neural Network Exchange (ONNX) results, while the mean Average Precision on 
the validation dataset (mAPVAL) is not significantly lower compared to larger 
models (Table 1). Thus, based on the recommendations [45-46] and test results, the 
decision fell on the YOLOv8s model in this research. 

Table 1 
Comparison of YOLOv8 models on COCO dataset [45]  

Model Image Size (pixels) mAPVAL Speed CPU ONNX (ms) 
YOLOv8n 640 37.3 80.4 
YOLOv8s 640 44.9 128.4 
YOLOv8m 640 50.2 234.7 
YOLOv8l 640 52.9 375.2 
YOLOv8x 640 53.9 479.1 

3.2 Dataset Preparation and YOLOv8s Training 
The overall pipeline of the dataset preparation, training and deployment of the 
YOLOv8 models is presented in Figure 2. The first step is the dataset preparation 
which includes the collecting of images and their annotation which can include 
some arbitrary pre-processing such as contrast adjustment, resizing, etc. [45, 47]. 
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After annotation and pre-processing, the next step involves augmentation, where 
training examples are generated based on selected augmentation options such as 
mosaics, rotation, shear, bounding box orientation, etc. [45, 47]. As it was noted, 
the Roboflow Framework and its annotation tool was used in this research which 
includes optional pre-processing and augmentation options [47]. Later, the 
annotated images can be split in training, validation and testing folders, while the 
annotated labels are saved in *.txt files, according to the YOLOv8 models 
requirements [47]. Finally, the prepared dataset can be exported to YOLOv8 models 
format and used for training, validation and testing [47]. The second step is the 
training of the YOLOv8s model object detector according to Ultralytics guidelines 
[45] in this research and finally the third step is the deployment of the trained 
network on sample images. 

 
Figure 2 

The overall pipeline of the YOLOv8 model [45]  

The dataset used in this initial study contains 1125 self-created images in order to 
avoid any authorship issues. Further, all the images were captured with a modest 
quality camera since the industrial camera will be procured with the UR10e cobot 
in future steps of the project. Since the goal was to train a robust object detector, 
the images were captured under various capturing conditions which includes 
various lighting, shadow, distance, background, etc. It should be mentioned, that 
the CCS2 socket is black and its near background is very dark, mostly black. This 
fact is important since it is obvious that the detection of this kind of socket is a 
difficult task for all object detection frameworks. Thus, even the training of the 
YOLOv8s is a challenging job.  

 
Figure 3 

The examples of annotated images [47]  
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After the images were uploaded to Roboflow, the annotation is performed with the 
frameworks built-in annotation tool [47]. The part of the annotated image dataset 
can be seen in Figure 3. All the annotated images are labelled appropriately and the 
labelling data is saved in the corresponding *.txt file [47]. The annotation was 
followed by an optional pre-processing steps that are included in the online platform 
[47]. The resizing to 128x70 pixels, automatic contrast adjustment and automatic 
orientation options were chosen for the image dataset pre-processing and it was 
executed according to the Roboflow’s built-in pre-processing algorithm [47]. 

The pre-processing is followed by the augmentation step. As it was mentioned, the 
data augmentation is an addition of new artificially derived data from existing 
training data with a goal to enhance the training of the neural network [45, 47].  
In this study, 10 augmentation options were included as it can be seen in Table 2. 
All these augmentation operations are randomly applied to the whole dataset 
according to Roboflow’s built in algorithm [47]. Finally, the dataset was split in 
three folders according to Roboflow’s recommended splitting procedure. After the 
split is performed, the new folders are: the training folder, validation folder and test 
folder. Hence, the training folder contains 975, the validation 93 and the test 57 
images respectively. The next step is the exportation of the dataset in ZIP file in the 
appropriate YOLOv8 format provided by Roboflow with the corresponding *.yaml 
file that contains the information related to dataset folders, number of object classes 
(“nc”) and the objects names (“names”) [47]. 

Table 2 
Data augmentation using Roboflow [47]  

Augmentation Options/Values 
Rotation Between -5° and +5° 
Shear ±5° Horizontal, ±5° Vertical 
Hue Between -25° and +25° 
Saturation Between -25% and +25% 
Brightness Between -10% and +10% 
Exposure Between -10% and +10% 
Cutout 1 box with 5% size each 
Bounding Box: Orientation Between -5° and +5° 
Bounding Box:Shear ±5° Horizontal, ±5° Vertical 
Bounding Box: Exposure Between -25% and +25% 
Mosaic Applied 

Later, the ZIP file should be extracted in a main folder, where the training process 
will be performed. All this information is required during the training, validation 
and testing process of the YOLOv8s model, thus the *.yaml file should be included 
in the main folder with the dataset folders [45-49]. If the *.yaml file is not provided, 
or it is incorrectly configured, the YOLOv8s network will not find the suitable data 
for the training. Finally, after the YOLOv8 framework is installed and set up in the 
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main folder, the training process can start, followed by the validation and testing 
steps in later stages [45-49]. The training process is performed according to 
Ultralytics instructions, mainly with the default settings provided by the framework 
itself in Command Line Interface (CLI) in Command Prompt on Windows 10 
platform [45]. The used hardware platform is CPU Intel CORE(TM) i7-10700 2.90 
GHz with 16 GB RAM (without Graphical Processing Unit - GPU), while the 
software platform is Ultralytics Yolov8.0.2.212, Python-3.10.9, torch-1.13.1.  
The training process was done with the YOLOv8s model, with 100 epochs, image 
size of 640 pixels and number of images per batch 32 [45-48], while all the other 
parameters were remained default [45]. The one epoch is when an entire dataset is 
passed forward and backward through the neural network only once, while the 
number of batches is a divided dataset into smaller sets or parts (called batches) that 
are passed through the neural network [45, 47]. The batch size is the total number 
of training examples present in a single batch [45, 47]. The training time was 21.133 
hours and the achieved mAP50 was 0.928, the mAP50-95 was 0.745, the recall was 
0.889, the precision was 0.947 and the inference time was 100.6 ms on the training 
dataset. The mAP50 refers to the calculation of the average precision across 
different levels of recall, up to a limit of 50 detections per image. This metric helps 
assess how well a model is performing in terms of both precision and recall, with a 
focus on the top 50 predictions [45]. The mAP50-95 is an extension of the mean 
mAP metric, specifically considering a range of IoU thresholds. The mAP50-95 is 
calculated by averaging the Average Precision (AP) values over a range of IoU 
thresholds, typically from 0.5 to 0.95, in increments of 0.05. The diagrams of the 
training results are shown in Figure 4, where the X axis represents the number of 
epochs, and the Y axis represents the corresponding parameter: the precision, recall, 
mAP50 and mAP50-95 respectively. Obviously, the training time would be shorter 
with an available GPU [45]. 

 
Figure 4 

The training results diagrams [45]  

In order to show the detecting capabilities of the trained YOLOv8s model, Fig. 5 
presents several detecting results from the validation dataset. As it can be noticed, 
the detection results are considerably accurate and acceptable, even in the examples 
were the CCS2 socket is poorly visible and distinguishable from the background. 
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Figure 5 

The results from the validation dataset  

Further, Figure 6 presents several detecting results from the test dataset. As it can 
be seen, the detection results are also very accurate and acceptable, although the 
images are of poor quality. 

 
Figure 6 

The results from the test dataset  

In the end, the training results of the YOLOv8s are considered acceptable and they 
fulfilled the goal of the study. In later developments, an industrial computer with an 
GPU should be acquired for the work and the control of the whole robotic system 
that should provide an adequate hardware support for the possible novel YOLOv8s 
model training. Also, it should be noted that when the UR robot arrives, the 
industrial camera will be installed on the robotic arm and the testing will be 
executed in real time on the vehicle body model with a built-in CCS2 socket and 
with e-vehicles. In the final stage when the system is verified and certified, the 
testing will be extended to other available e-vehicles. 

4 Experiments and Results  
In this section, a comprehensive explanation of the conducted experiments and the 
corresponding results will be presented. As it was highlighted in the Introduction, 
the primary objective of this initial study is to exclusively employ established and 
verified CNN object detector in the development of the CCS2 socket detection 
procedure. Hence, the trained YOLOv8s model’s performance was assessed using 
artificial vehicle body model equipped with the socket. A diverse range of capturing 
conditions were deliberately examined to thoroughly assess and delineate the 
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capabilities and constraints inherent in the implemented object detector. It should 
be noted, that one of the main aspects in the development of the object detector 
model is the generation of a high-quality, usable input image appropriate for 
industrial applications that would be ensured in the real application. In addition to 
the use of high-quality capturing devices, the main requirement is the formation of 
an appropriately illuminated environment without disturbing effects, which can 
ensure the repeatability of a quality image capturing later in the commercial use on 
the parking lot. Herein, in the experiments, a modest quality camera was used in 
order to determine and examine the possibilities of the trained and deployed 
YOLOv8s model for initial study purposes. The image dataset was generated 
internally using a test vehicle body model equipped with an original CCS2 socket, 
and it contains 975 images. The images were captured across diverse recording 
conditions, deliberately including instances under less-than-ideal capturing 
conditions in numerous examples in order to examine the robustness and the 
limitations of the trained YOLOv8s object detector. Different capturing conditions 
includes: various camera distance and angle position, intentional shading, various 
illumination conditions, hazy images, etc.  

Since this is an initial research, using the self-created internal image database serves 
the purpose of avoiding potential legal repercussions that may arise from the use of 
images depicting proprietary vehicles. Thus, the testing on real e-vehicles will be 
arranged at a later stage of the project, when all the equipment with the constructed 
charging station will be available, with legally rented and insured vehicles by the 
project management. The self-created dataset is not public since it is a part of a 
commercial industrial project, and it can be provided only with the permission of 
the project management and the project client. 

The testing and the prediction with YOLOv8 object detector has been executed 
automatically on the whole dataset placed in a custom folder, with a proposed 
prediction options [45]. The prediction was launched with the command line 
interface (CLI), where the confidence threshold was set to 0.2, the image 
augmentation to prediction sources was turned on during the testing and the result 
saving option was activated [45]. All the other parameters remained the default and 
the detection results were saved in a separate folder for evaluation purposes [45]. 

The testing and prediction results achieved a considerable accuracy since in 948 
images the detection was correct while in 27 images the detection failed (in 13 
samples were no detection, and in 14 samples were false detection). This detection 
resulted with a 97.23% accuracy on the available self-developed image dataset. 
Figure 6 displays 25 samples with correctly detected CCS2 sockets (from the 948 
correct samples). As it can be noticed, all the samples are captured under various 
capturing conditions, mostly with poor quality since the aim was to assess the 
capabilities and limitations of the trained YOLOv8s object detector. Further, it can 
observed, that even under excessive slant, hazy image, or shadow the socket is 
successfully detected with a lower confidence level, however the bounding box is 
correctly drawn around the detected object. Also, in examples where the small part 
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of the CCS2 is missing due to the excessive slant, a correct detection is achieved. 
One of the reasons of successful detection under inordinate image capturing 
conditions is the activated augmentation option during the prediction according to 
the related documentation [45]. Therefore, this is also a great advantage of the 
YOLOv8s model in applications where incorrect input images are expected during 
the work. Naturally, in the real application an appropriate lighting source will be 
mounted on the parking lot, and an industrial AD/3D camera is intended to be used 
with a special speckle-free blue laser. All these will contribute to a much better-
quality input image, which will certainly facilitate and improve the detection result 
of the trained YOLOv8s object detector. 

     

    

   

     

     

Figure 7 
The detection results from the self-created dataset  
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In the end, this initial study entirely fulfilled the aim of the project, and the detection 
of the charging socket with a renowned YOLOv8s object detector was achieved. 
The practical application of the obtained results will be tested in the future, where 
the experiments will be executed with an UR10e robot on electric vehicles with 
adequate industrial vision and sensing equipment. The future managerial 
implications are the legal rent of a certain number of electric vehicles for testing 
purposes and the construction of an adequate real-world parking lots for 
experiments with the robot in an industrial environment. 

Conclusions 

This study introduced the training and deployment of YOLOv8s for charging socket 
detection in automated EV charging. Key steps in dataset preparation, training, and 
deployment were presented. Aiming for high robot reliability, a well-known object 
detector was chosen. Experiments on a custom vehicle model demonstrated a 
successful detection, with YOLOv8s showing good accuracy, robustness, and 
resistance to lighting variations and slant. Limitations under certain lighting and 
slant conditions were identified and will be addressed in future work with a high-
quality industrial camera. Deployment incorporated all project requirements and 
achieved the set goal. Further development will involve industrial camera 
integration with both the collaborative robot and EVs on a built parking lot. 

Acknowledgement 

This research is a part of projects GINOP_PLUSZ-2.1.1-21-2022-00249 of Óbuda 
University and 2020-1.1.2-PIACI-KFI-2020-00173 of University of Dunaujvaros. 

References  

[1] P. Akella et al., "Cobots for the automobile assembly line", Proceedings 1999 
IEEE International Conference on Robotics and Automation (Cat. 
No.99CH36288C), 1999, pp. 728-733, Vol. 1, doi: 
10.1109/ROBOT.1999.770061 

[2] Asif, Seemal, Philip Webb, "Realtime Calibration of an Industrial Robot", 
Applied System Innovation 5, No. 5: 96, 2022, 
https://doi.org/10.3390/asi5050096 

[3] https://www.universal-robots.com/, Accessed: 08.09.2023 

[4] K. W. E. Cheng, "Recent development on electric vehicles", 2009 3rd 
International Conference on Power Electronics Systems and Applica-tions 
(PESA), 2009, pp. 1-5, ISBN:978-1-4244-3845-7 

[5] X. Zhou et al., "The current research on electric vehicle," 2016 Chinese 
Control and Decision Conference (CCDC), 2016, pp. 5190-5194, doi: 
10.1109/CCDC.2016.7531925 

[6] H. S. Matharu, V. Girase, D. B. Pardeshi and P. William, "Design and 
Deployment of Hybrid Electric Vehicle, "2022 International Con-ference on 



V. Tadic et al.   Electric Vehicle Charging Socket Detection using YOLOv8s Model 

‒ 136 ‒ 

Electronics and Renewable Systems (ICEARS), 2022, pp. 331-334, doi: 
10.1109/ICEARS53579.2022.9752094 

[7] W. Luo and L. Shen, "Design and Research of an Automatic Charging 
System for Electric Vehicles", 2020 15th IEEE Conference on In-dustrial 
Electronics and Applications (ICIEA), 2020, pp. 1832-1836, doi: 
10.1109/ICIEA48937.2020.9248188 

[8] H. Wang, "A New Automatic Charging System for Electric Vehicles", 2021 
2nd International Conference on Computing and Data Science (CDS), 2021, 
pp. 19-26, doi: 10.1109/CDS52072.2021.00011 

[9] https://docs.ultralytics.com/ 

[10] Tadic, V.; Odry, A.; Burkus, E.; Kecskes, I.; Kiraly, Z.; Klincsik, M.; Sari, 
Z.; Vizvari, Z.; Toth, A.; Odry, P., “Painting Path Planning for a Painting 
Robot with a RealSense Depth Sensor”, Appl. Sci. 2021, 11, 1467 

[11] Tadic, V.; Odry, A.; Burkus, E.; Kecskes, I.; Kiraly, Z.; Vizvari, Z.; Toth, 
A.; Odry, P., “Application of the ZED Depth Sensor for Painting Robot 
Vision System Development”, IEEE Access 2021, 9, 117845-117859 

[12] Tadic, V.; Toth, A.; Vizvari, Z.; Klincsik, M.; Sari, Z.; Sarcevic, P.; Sarosi, 
J.; Biro, I., “Perspectives of RealSense and ZED Depth Sensors for Robotic 
Vision Applications”, Machines 2022, 10, 183, 
https://doi.org/10.3390/machines10030183 

[13] R. C. Gonzales and R. E. Woods, Digital Image Processing, 4th ed., Pearson, 
NJ, USA, 2018 

[14] R. C. Gonzales, R. E. Woods, and S. L. Eddins, Digital Image Processing 
Using MATLAB, 3rd ed. Knoxville, TN, USA: Gatesmark, 2020 

[15] Fabrizio Flacco, Torsten Kroger, Alessandro De Luca, Oussama Khatib, “A 
Depth Space Approach to Human-Robot Collision Avoid-ance”, 2012 IEEE 
International Conference on Robotics and Automation RiverCentre, Saint 
Paul, Minnesota, USA May 14-18, 2012 

[16] Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng, “3-D Depth 
Reconstruction from a Single Still Image”, International Journal of Computer 
Vision, 2008, Volume 76, Issue 1, pp. 53-69 

[17] Vladimiros Sterzentsenko, Antonis Karakottas, Alexandros Papachristou, 
Nikolaos Zioulis, Alexandros Doumanoglou, Dimitrios Zarpalas, Petros 
Daras, “A low-cost, flexible and portable volumetric capturing system”, 14th 
International Conference on Signal-Image Technology & Internet-Based 
Systems (SITIS), 2018, doi: 10.1109/SITIS.2018.00038 

[18] Nicole Carey, Radhika Nagpal, Justin Werfel, “Fast, accurate, small-scale 
3D scene capture using a low-cost depth sensor”, 2017 IEEE Winter 
Conference on Applications of Computer Vision (WACV), DOI: 
10.1109/WACV.2017.146 



Acta Polytechnica Hungarica Vol. 21, No. 10, 2024 

‒ 137 ‒ 

[19] Mathieu Labbé, François Michaud, “RTAB‐Map as an open‐source lidar and 
visual simultaneous localization and mapping library for large‐scale and 
long‐term online operation”, J Field Robotics. 2018; 1-31, DOI: 
10.1002/rob.21831 

[20] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mihai Dolha, 
Michael Beetz, “Towards 3D Point cloud based object maps for household 
environments”, Robotics and Autonomous Systems 56, 2008, 927_941, 
doi:10.1016/j.robot.2008.08.005 

[21] Tobias Schwarze, Martin Lauer, “Wall Estimation from StereoVision in 
Urban Street Canyons”, Proceedings of the 10th International Conference on 
Informatics in Control, Automation and Robotics, pp. 83-90, DOI: 
10.5220/0004484600830090 

[22] Jean-Emmanuel Deschaud, François Goulette, “A Fast and Accurate Plane 
Detection Algorithm for Large Noisy Point Clouds Using Filtered Normals 
and Voxel Growing”, 3DPVT, May 2010, Paris, France, hal-01097361 

[23] Aghi, D.; Mazzia, V.; Chiaberge, M., “Local Motion Planner for 
Autonomous Navigation in Vineyards with a RGB-D Camera-Based 
Algorithm and Deep Learning Synergy”, Machines, 2020, 8, 27, 
https://doi.org/10.3390/machines8020027l 

[24] Kin-Choong Yow1, Insu Kim, “General Moving Object Localization from a 
SingleFlying Camera”, Applied Sciences, 2020, 10, 6945; 
doi:10.3390/app10196945 

[25] Xianyu Qi, Wei Wang1, Ziwei Liao, Xiaoyu Zhang, Dongsheng Yang, Ran 
Wei, “Object Semantic Grid Mapping with 2D LiDAR and RGB-D Camera 
for Domestic Robot Navigation”, Applied Sciences, 2020, 10, 5782; 
doi:10.3390/app10175782 

[26] Vladimir Tadic, Akos Odry, Attila Toth, Zoltan Vizvari, Peter Odry, 
“Fuzzified Circular Gabor Filter for Circular and Near-Circular Object 
Detection”, IEEE Access, DOI: 10.1109/ACCESS.2020.2995553 

[27] Mingqiang Pan, Cheng Sun, Jizhu Liu, Yangjun Wang, “Automatic 
recognition and location system for electrlc vehicle charging port in complex 
environment”, IET lmage Processing, 2020, Vol. 14, 188.10, рр. 2263-2272, 
doi: 10.1049/iet-ipr.2019.11З8 

[28] Hui Zhang, Xiating Jin, “A Method for New Energy Electric Vehicle 
Charging Hole Detection and Location Based on Machine Vision”, 5th 
International Conference on Environment, Materials, Chemistry and Power 
Electronics, EMCPE, 2016, Atlantis Press 

[29] Justinas Mišeikis, Matthias Rüther, Bernhard Walzel, Mario Hirz and 
Helmut Brunner, “3D Vision Guided Robotic Charging Station for Electric 
and Plug-in Hybrid Vehicles”, Proceedings of the OAGM&ARW Joint 
Workshop, 2017, doi: 10.3217/978-3-85125-524-9-13 



V. Tadic et al.   Electric Vehicle Charging Socket Detection using YOLOv8s Model 

‒ 138 ‒ 

[30] P. Quan, Y. Lou, H. Lin, Z. Liang and S. Di, "Research on Fast Identification 
and Location of Contour Features of Electric Vehicle Charging Port in 
Complex Scenes", in IEEE Access, Vol. 10, pp. 26702-26714, 2022, doi: 
10.1109/ACCESS.2021.3092210 

[31] Quan, P.; Lou, Y.; Lin, H.; Liang, Z.; Wei, D.; Di, S., “Research on Fast 
Recognition and Localization of an Electric Vehicle Charging Port Based on 
a Cluster Template Matching Algorithm”, MDPI Sensors 2022, 22, 3599. 
https://doi.org/10.3390/s22093599 

[32] Y. Lou and S. Di, "Design of a Cable-Driven Auto-Charging Robot for 
Electric Vehicles", in IEEE Access, Vol. 8, pp. 15640-15655, 2020, doi: 
10.1109/ACCESS.2020.2966528 

[33] Lin, H.; Quan, P.; Liang, Z.; Lou, Y.; Wei, D.; Di, S., “Collision Localization 
and Classification on the End-Effector of a Cable-Driven Manipulator 
Applied to EV Auto-Charging Based on DCNN–SVM”, MDPI Sensors, 
2022, 22, 3439, https://doi.org/10.3390/s22093439 

[34] Li, T.; Xia, C.; Yu, M.; Tang, P.; Wei, W.; Zhang, D., “Scale-Invariant 
Localization of Electric Vehicle Charging Port via Semi-Global Matching of 
Binocular Images”, Appl. Sci. 2022, 12, 5247, 
https://doi.org/10.3390/app12105247 

[35] Damien Chablat, Riccardo Mattacchione, Erika Ottaviano, “Design of a 
robot for the automatic charging of an electric car”, ROMANSY 24 - Robot 
Design, Dynamics and Control, Springer, 2022, hal-03624780 Vladimir 

[36] Vladimir Tadic, “Study on Automatic Electric Vehicle Charging Socket 
Detection using ZED 2i Depth Sensor”, MDPI Electronics, 2023, 12, 912, 
https://doi.org/10.3390/electronics12040912 

[37] Muhammad Hussain, “YOLO-v1 to YOLO-v8, the Rise of YOLO and Its 
Complementary Nature toward Digital Manufacturing and Industrial Defect 
Detection”, MDPI Machines 2023, 11, No. 7: 677, 
https://doi.org/10.3390/machines11070677 

[38] Hicham Slimani, Jamal El Mhamdi, Abdelilah Jilbab, “Artificial 
Intelligence-based Detection of Fava Bean Rust Disease in Agricultural 
Settings: An Innovative Approach”, International Journal of Advanced 
Computer Science and Applications, Vol. 14, No. 6, 2023 

[39] Nabin Sharma, Sushish Baral, May Phu Paing, and Rathachai Chawuthai, 
"Parking Time Violation Tracking Using YOLOv8 and Tracking 
Algorithms", MDPI Sensors, 2023, 23, No. 13: 5843, 
https://doi.org/10.3390/s23135843 

[40] Talaat, F. M., ZainEldin, H., “An improved fire detection approach based on 
YOLO-v8 for smart cities”, Neural Computing & Application, 35, 20939-
20954, 2023, Springer, https://doi.org/10.1007/s00521-023-08809-1 



Acta Polytechnica Hungarica Vol. 21, No. 10, 2024 

‒ 139 ‒ 

[41] Ruihan Bai, Feng Shen, Mingkang Wang, Jiahui Lu, Zhiping Zhang, 
“Improving Detection Capabilities of YOLOv8-n for Small Objects in 
Remote Sensing Imagery: Towards Better Precision with Simplified Model 
Complexity”, 22 June 2023, Preprint Version 1 available at Research Square 
[https://doi.org/10.21203/rs.3.rs-3085871/v1] 

[42] Fatemeh Rashidi Fathabadi, Janos L. Grantner, Ikhlas, Abdel-Qader, Saad 
A. Shebrain M. D., “Box-Trainer Assessment System with Real-Time Multi-
Class Detection and Tracking of Laparoscopic Instruments, using CNN”, 
Acta Polytechnica Hungarica, Vol. 19, No. 2, 2022, 
DOI:10.12700/APH.19.2.2022.2.1 

[43] Lei Kou, “A Review of Research on Detection and Evaluation of the Rail 
Surface Defects”, Acta Polytechnica Hungarica, Vol. 19, No. 3, 2022, 
DOI:10.12700/APH.19.3.2022.3.14 

[44] Man-Wen Tian, Ardashir Mohammadzadeh, Jafar Tavoosi, Saleh Mobayen, 
Jihad H. Asad, Oscar Castillo, Annámaria R. Várkonyi-Kóczy, “A Deep-
learned Type-3 Fuzzy System and Its Application in Modeling Problems”, 
Acta Polytechnica Hungarica, Vol. 19, No. 2, 2022, 
DOI:10.12700/APH.19.2.2022.2.9 

[45] https://docs.ultralytics.com/, Accessed: 05.10.2023 

[46] Frederik Fritsch, “Deep Neural Networks for Object Detection in Satellite 
Imagery”, UPTEC IT23 014 Master Thesis, Uppsala Universitet, 2023 

[47] https://roboflow.com/, Accessed: 05.08.2023 

[48] Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu, Jun Li, Jinhui 
Tang and Jian Yang, “Generalized Focal Loss: Learning Qualified and 
Distributed Bounding Boxes for Dense Object Detection”, 
arXiv:2006.04388, 2020 

[49] Yolov8 model architecture layout. https://github.com/RangeKing, Accessed: 
08.10.2023 


	1 Introduction
	2 Related Works
	3 Methods
	3.1 YOLOv8 Framework
	3.2 Dataset Preparation and YOLOv8s Training

	4 Experiments and Results

