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Abstract: In this paper, a weighted algorithm, based on the reduced differential transform
method, is introduced. The new approach is adopted in the approximate analytical solution
of the Cauchy problem for the Burgers-Huxley equation. The proposed scheme considers
the initial and boundary conditions simultaneously for obtaining a solution of the equation.
Several examples are discussed demonstrating the performance of the algorithm.
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1 Introduction

Obtaining solutions for nonlinear equations plays an important role in the study of
many nonlinear phenomena. In this perspective, during the last years, seeking the
solution of nonlinear models has been an important topic in mathematical physics.
One important nonlinear equation is the generalized Burgers-Huxley equation [1, 2,
3, 4, 5]

∂u
∂ t

= κ
∂ 2u
∂x2 −αuδ ∂u

∂x
+βu(1−uδ )(ηuδ − γ), (1)

where κ , α , β and η are real constants, δ is a positive integer and γ ∈ [0,1].
The equation (1) is a generalization of various well known nonlinear equations, such
as the Burgers, Huxley, FitzHugh-Nagumo, Burgers-Huxley and Burgers-Fisher
models [1, 2, 6, 7, 8]. These equations describe different phenomena in math-
ematical physics, biomathematics, chemistry and mechanics [9, 10, 11, 12, 13].
The Burgers equation characterizes the wave propagation in dissipative systems [1].
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The reaction-diffusion FitzHugh-Nagumo equation is used for investigating the dy-
namical behavior near the bifurcation point for the Rayleigh-Benard convection of
binary fluid mixtures [6]. The Huxley equation describes the dynamics of elec-
tric pulses propagation in nerve fibres [7]. The Burgers-Fisher equation has ap-
plication in plasma physics, capillary-gravity waves, optics and chemical physics
[9, 10, 11, 12, 13, 14].
The generalized Burgers-Huxley equation has been considered recently by researchers
that developed some analytical and numerical methods for its solution. Schemes
such as the adomian decomposition [14], homotopy perturbation [15], homotopy
analysis [16], and reduced differential transform [17] were proposed to solve the
initial value problem of the Burgers-Huxley equation. Moreover, some authors
considered the initial boundary value problem of this equation and used spectral
collocation [18], finite-difference [19, 20], Haar wavelet [21] and modified cubic
B-spline differential quadrature [22] methods for its solution.
The generalized Burgers-Huxley equation (1) is considered with the conditions

u(x,0) = f (x), (2)

and

u(0, t) = p(t), ux(0, t) = q(t). (3)

In this work, a weighted technique, according to the reduced differential transform
method (RDTM), is introduced for solving (1)-(3).
The RDTM was adopted by researchers to obtain the analytical and approximate so-
lutions for nonlinear problems [23, 24, 25]. Often, the differential transform method
is considered according to the initial condition of the problem, but, here we use the
initial and boundary conditions.
Bearing these ideas in mind, this paper is organized as follows. In Sections 2 and
3, the RDTM and a weighted algorithm are introduced, respectively. In Section 4,
several prototype problems are solved in order to show the ability and efficiency of
the new algorithm. Finally, in section 5 the main conclusions are outlined.

2 Reduced differential transform method

In this section, the fundamental definitions and operations of the RDTM are re-
viewed. Consider a function of u(x, t) and suppose that the two-dimensional func-
tion u(x, t) is separable as u(x, t) = f (x)g(t). Based on the features of differential
transform [23], we can represent this function as

u(x, t) =
∞

∑
k=0

Fixi
∞

∑
j=0

G jt j =
∞

∑
k=0

Uk(x)tk =
∞

∑
k=0

Vk(t)xk, (4)

where Vk(t) and Uk(x) are called x-dimensional and t-dimensional spectrum func-
tions of u(x, t), respectively.

Definition 1. Suppose that u(x, t) is analytic and differentiated continuously with
respect to t and x in their domains. Then
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Table 1
Some operations of the reduced differential transform.

Function Form Transformed Form

u(x, t) Uk(x) = 1
k!

[
∂ k

∂ tk u(x, t)
]

t=0

u(x, t) = c (c is a constant) Uk(x) = δ (k) =
{

1 k=0
0 k 6=0

u(x, t) = v(x, t)+w(x, t) Uk(x) =Vk(x)+Wk(x)
u(x, t) = cv(x, t) Uk(x) = cVk(x) (c is a constant)
u(x, t) = xmv(x, t) Uk(x) = xmVk
u(x, t) = tmv(x, t) Uk(x) =Vk−m

u(x, t) = xmtn Uk(x) = xmδ (k−n) =
{

xm k=n
0 k 6=n

u(x, t) = ∂ m

∂ tm v(x, t) Uk(x) =
(k+m)!

k! Vk+m(x)
u(x, t) = ∂ m

∂xm v(x, t) Uk(x) = ∂ m

∂xm Vk(x)

u(x, t) = v2(x, t) Uk(x) =
k−1
∑

r=0
V (r)(x)V (k− r−1)(x)

u(x, t) = v3(x, t) Uk(x) =
k−1
∑

s=0

s
∑

r=0
V (r)(x)V (k− s−1)(x)V (s− r)(x)

• The transformed function Uk(x) is defined as

Uk(x) =
1
k!

[
∂ k

∂ tk u(x, t)
]

t=0
. (5)

Its inverse differential transformation of Uk(x) is

u(x, t) =
∞

∑
k=0

Uk(x)tk. (6)

• The transformed function Vk(t) is defined as

Vk(t) =
1
k!

[
∂ k

∂ tk u(x, t)
]

x=0
. (7)

The inverse differential transformation of Vk(t) is

u(x, t) =
∞

∑
k=0

Vk(t)xk. (8)

The main operations of the reduced differential transform, according to the variable
t, that can be deduced from Eqs. (5) and (6) [24, 25] are listed in Table 1. These
operations can be obtained in a similar way for the reduced differential transforms
according to the variable x.

Let us illustrate the fundamental concepts in more detail. Suppose L is a linear
operator and N is a nonlinear operator. Consider a general nonlinear differential
equation as

L[u(x, t)]+N[u(x, t)] = φ(x, t), (9)
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with the initial condition

u(x,0) = u0(x), (10)

where φ(x, t) is an inhomogeneous term. We assume that L = ∂

∂ t . According to the
properties of RDTM in Table 1, we get

(k+1)Uk+1(x) = Φk(x)−N[Uk(x)], (11)

where Uk(x), NUk(x) and Φk(x) are the transformations of Lu(x, t), Nu(x, t) and
φ(x, t).
If we consider U0(x)= u0(x) as the transformation of (10), then u(x, t) can be written
as

u(x, t) =
∞

∑
k=0

Uk(x)tk, (12)

Similarly, the recurrence relation (11) and the expressions of Table 1 may be intro-
duced for L = ∂ 2

∂x2 as well. In this case, considering V0(t) = p(t) and V1(t) = q(t),
we get

u(x, t) =
∞

∑
k=0

Vk(t)xk. (13)

3 The weighted method

A weighted method according to the RDTM is now presented for the solution of (1)-
(3). We formulate the algorithm in two steps. In the first step, we consider (1) and
we denote L = ∂

∂ t . Applying the basic properties of the differential transformations
and Table 1, and substituting U0(x) = f (x) as the differential transformation of (2),
we get the approximate solution

ûn(x, t) =
n

∑
k=0

Uk(x)tk. (14)

In the second step, we seek the approximate solution of the Eq. (1) according to the
conditions (3). Suppose that L = ∂ 2

∂x2 . Taking the differential transformation of (1)
and applying the basic properties listed in Table 1 with respect to x, the approximate
solution

ǔn(x, t) =
n

∑
k=0

Vk(t)xk, (15)

is obtained. From the boundary conditions (3), we have

V0(t) = p(t), (16)

– 186 –



Acta Polytechnica Hungarica Vol. 13, No. 6, 2016

and

V1(t) = q(t). (17)

The approximate solutions (14) and (15) are not solutions of the problem (1)-(3),
because expression (14) is obtained according to the initial condition (2) while ex-
pression (15) is obtained according to the boundary conditions (3). Thus, to obtain
an approximate solution of the generalized Burgers-Huxley equation (1) that satis-
fies the conditions (2) and (3) simultaneously, we consider a convex combination of
(14) and (15) as

uapprox[n](x, t) = cûn(x, t)+(1− c)ǔn(x, t), (18)

where c ∈ [0,1]. The limit of uapprox[n](x, t) is equal to u(x, t) when n approaches
infinity. For determining the value of the parameter c, we follow the scheme pre-
sented in [26] to minimize the discrepancy between uapprox[n](x,0), uapprox[n](0, t)

and
∂uapprox[n]

∂x (0, t) with f (x), ϕ(t) and ψ(t) in (2) and (3).

Theorem 1. Suppose that f (x) ∈ L2[(0,L)], φ(t),ψ(t) ∈ L2[(0,T )] and ‖.‖ denotes
the L2−norm. Let

c1 = ‖ûn(0, t)−φ(t)‖,

c2 = ‖
∂ ûn

∂x
(1, t)−ψ(t)‖,

c3 = ‖ǔn(x,0)− f (x)‖.

Then the optimal value for c in (18) is

c =
c2

3

c2
1 + c2

2 + c2
3
, n≥ 0. (19)

Proof. According to conditions (1)-(3), we define the following residual function
on the domain {(x, t)|(x, t) ∈ [0,L]× [0,T ]} as

Fn(x, t;c) = ‖un(0, t)−φ(t)‖+‖∂un

∂x
(1, t)−ψ(t)‖+‖un(x,0)− f (x)‖. (20)

Substituting (18) into (20), we have

Fn(x, t;c) = ‖cûn(0, t)+(1− c)ǔn(0, t)−φ(t)‖2

+ ‖c∂ ûn

∂x
(1, t)+(1− c)

∂ ǔn

∂x
(1, t)−ψ(t)‖2

+ ‖cûn(x,0)+(1− c)ǔn(x,0)− f (x)‖2.

From (14), (15) and (18), we get

Fn(x, t;c) = ‖cûn(0, t)+(1− c)φ(t)−φ(t)‖2 +‖c∂ ûn

∂x
(1, t)+(1− c)ψ(t)−ψ(t)‖2

+ ‖c f (x)+(1− c)ǔn(x,0)− f (x)‖2

= ‖cûn(0, t)− cφ(t)‖2 +‖c∂ ûn

∂x
(1, t)− cψ(t)‖2

+ ‖(1− c)ǔn(x,0)− (1− c) f (x)‖2 = c2c2
1 + c2c2

2 +(1− c)2c2
3.
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The optimal value of c will minimize the residual function Fn. Thus, differentiating
Fn with respect to c and setting the result equal to zero, yields

c =
c2

3

c2
1 + c2

2 + c2
3
, n≥ 0.

4 Applications

We analyze here the efficiency and applicability of the weighted reduced differen-
tial transform method (WRDTM). In this line of thought, we apply the WRDTM
to Cauchy problems of some special cases of the generalized Burgers-Huxley equa-
tions in the areas of mathematical physics and mathematical biology. In the sequel
we adopt n terms when evaluating the approximate solution un(x, t).

Example 1. Consider the following problem

∂u
∂ t

=
∂ 2u
∂x2 −

∂u
∂x

, x > 0, t > 0, (21)

with initial condition:

u(x,0) = λ

(
1− tanh

(
λx
2

))
, (22)

and boundary conditions:

u(0, t) = λ

(
tanh

(
λ 2t
2

)
+1
)
, ux(0, t) =− 1

2 λ 2sech2
(

λ 2t
2

)
, (23)

where λ ∈R is an arbitrary parameter.

The problem (21)-(23) has the exact solution u(x, t) = λ (1− tanh( 1
2 λ (x−λ t))). By

using the properties of the differential transformation with respect to t, we can write

Uk(x) =
1
k

(
∂ 2

∂x2 Uk−1(x)−
k−1

∑
r=0

dUr(x)
dx

Uk−r−1(x)

)
. (24)

Starting with U0(x) = λ

(
1− tanh

(
λx
2

))
, from (24) we find

U1(x) =
1
2

λ
3sech2

(
λx
2

)
,

U2(x) = 2λ
5 sinh4

(
λx
2

)
csch3(λx),

U3(x) =
1

24
λ

7(cosh(λx)−2)sech4
(

λx
2

)
,

· · · .

The differential inverse transform of Uk(x) gives:

ûn(x, t) =
n

∑
k=0

Uk(x)tk. (25)
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Now, we take the differential transformation of the Eq. (21) with respect to x. We
apply the properties of Table 1 yielding

Vk(t) =
1

k(k−1)

(
∂

∂ t
Vk−2(t)−Vk−2 +

k−2

∑
r=0

(r+1)Vr+1(t)Vk−2−r(t)

)
. (26)

After substituting

V0(t) = λ

(
tanh

(
λ 2t
2

)
+1
)
,

and

V1(t) =−
1
2

λ
2sech2

(
λ 2t
2

)
,

as the transformation of the boundary conditions in (23) , into (26), we obtain the
next terms as

V2(t) = −2λ
3 sinh4

(
λ 2t
2

)
csch3 (

λ
2t
)
,

V3(t) = − 1
24

λ
4 (cosh

(
λ

2t
)
−2
)

sech4
(

λ 2t
2

)
,

· · · .

Using the differential inverse transform of Vk(x), we obtain

ǔn(x, t) =
n

∑
k=0

Vk(t)xk. (27)

Suppose that λ = 0.7 and n = 12. According to (25), (27) and Theorem 1 we get
c = 0.999877.
The approximate solution will be obtained by means of the expression (18). Figure
1 shows the exact and the approximate solutions of the problem for several values
of t. The absolute error function e12(x, t) = |u(x, t)−uapprox[12](x, t)| on the domain
{(x, t)|(x, t) ∈ [0,5]× [0,5]}, is shown in Figure 2.

Figure 1
The exact and approximate solutions of example 1 with n = 12. Left: Plot of the approximate
solution. Right: Exact solution (red line) and approximate solution (gray points) for various
values of t.
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Figure 2
Absolute error for the approximate solution of example 1 with n = 12.

Example 2. Consider the problem

∂u
∂ t

=
∂ 2u
∂x2 +u

∂u
∂x

+u(1−u)(u−1), x > 0, t > 0, (28)

with initial condition:

u(x,0) =
1
2
− 1

2
tanh

( x
4

)
, (29)

and boundary conditions:

u(0, t) = 1
2 −

1
2 tanh

( 3t
8

)
, ux(0, t) =− 1

8 sech2
( 3t

8

)
. (30)

The equation (28) is called Chaffee-Infante equation representing a reaction Duffing
model discussed in mathematical physics. The exact solution of this problem is as
follow:

u(x, t) =
1
2
− 1

2
tanh

(
3t
8
+

x
4

)
.

For applying the WRDTM we take the differential transform of (1) according to x
and t, respectively, gives

Uk(x) = 1
k

(
∂ 2

∂x2 Uk−1(x)−Uk−1(x)+
k−1
∑

r=0

∂

∂xUr(x)Uk−1−r(x)

+2
k−1
∑

r=0
Ur(x)Uk−1−r(x)−

k−1
∑

s=0

s
∑

r=0
Ur(x)Us−r(x)Uk−1−s(x)

)
,

(31)

Vk(t) = 1
k(k−1)

(
∂

∂ t Vk−2(t)+Vk−2(t)−
k−2
∑

r=0
(r+1) ∂

∂xVr+1(t)Vk−2−r(t)

−2
k−2
∑

r=0
Vr(t)Uk−2−r(t)+

k−2
∑

s=0

s
∑

r=0
Vr(t)Vs−r(t)Vk−2−s(t)

)
.

(32)

For finding the solution of (28)-(30), we start the recursive relation (31) with
U0(x) = 1

2 −
1
2 tanh

( x
4

)
and the recursive relation (32) with V0(t) = 1

2 −
1
2 tanh( 3t

8 )

and V1(t) = − 1
8 sech2(

3t
8
). By using the relations (14), (15) and (18), the approx-

imate solution will be obtained. Suppose that n = 15. From Theorem 1 we get
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Figure 3
The exact and approximate solutions of example 2 with n = 15. Left: Plot of the approximate
solution. Right: Exact solution (red line) and approximate solution (gray points) for various
values of t.

Figure 4
Absolute error for the approximate solution of example 2 with n = 15.

c = 8.04462× 10−9. Figure 3 depicts the exact solution of (28)-(30) and its ap-
proximations in the domain {(x, t)|(x, t) ∈ [0,5]× [0,5]}. The absolute error of the
approximate solution, is shown in Figure 4.

Example 3. Consider the equation (1) with α = β = η = κ = 1, γ =−1 and δ = 2.

Also, in the conditions (2) and (3) assume that f (x) =
√

1
2 −

1
2 tanh

( x
3

)
, p(t) =√

1
2 tanh

( 10t
9

)
+ 1

2 and q(t) = −
sech2

( 10t
9

)
12
√

1
2 tanh( 10t

9 )+ 1
2

. Under these assumptions,

the exact solution of (1)-(3) is u(x, t) =
√

1
2 tanh( 10t

9 −
x
3 )+

1
2 .

Taking the differential transform subject to x and t, we get the following recurrence
relations

Uk(x) = 1
k

(
∂ 2

∂x2 Uk−1(x)+Uk−1(x) −
k−1
∑

s=0

s
∑

r=0
Ur(x)Us−r(x)Uk−1−s(x)

−
k−1
∑

s=0

s
∑

r=0

∂

∂xUr(x)Us−r(x)Uk−1−s(x)
)
,

(33)
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and

Vk(t) = 1
k(k−1)

(
∂

∂ t Vk−2(t)−Vk−2(t) +
k−2
∑

s=0

s
∑

r=0
(r+1)Vr(t)Vs−r(t)Vk−2−s(t)

+
k−2
∑

s=0

s
∑

r=0
Vr(t)Vs−r(t)Vk−2−s(t)

)
.

(34)

Assuming that n = 10 and using (14), (15), (33) and (34), from (19) we get c =
0.413211. Substituting c in (18), yields an approximate solution. Figure 5 compares
the approximate and the exact solution of the problem. The relative error function

r10(x, t) =
|u(x,t)−uapprox[10](x,t)|

|u(x,t)| is shown in Figure 6.

Figure 5
The approximate and exact solutions of example 3 with n = 10. Left: Plot of the approximate
solution. Right: Exact solution (red line) and approximate solution (gray points) for various
values of t.

Figure 6
The relative errors for the approximate solution of example 3 with n = 10.

5 Conclusion

In this work a Cauchy problem of the generalized Burgers-Huxley equations was
considered. Using the reduced differential transform method, a weighted algorithm
to determine approximate-analytical solution was developed. To show the capabil-
ity and reliability of the novel method, the solution of some special cases of the
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generalized Burgers-Huxley equation were obtained. The results confirm that the
WRDTM is an efficient technique to solve such Cauchy problems.
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