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Abstract: The learning process of conventional reinforcement learning methods, such as Q-
learning and SARSA typically start with an empty knowledge base. In each iteration step, the 
initial empty knowledge base is gradually constructed by reinforcement signals obtained 
from the environment. Even only if a fragment of knowledge is available regarding the system 
behavior which can be injected into the learning process, the learning performance can be 
improved. In Heuristically Accelerated Fuzzy Rule Interpolation-based Q-learning (HFRIQ-
learning), the external knowledge can be represented in the form of human experts defined 
state-action fuzzy rules. If the expert knowledge base contains inaccuracies, i.e., incorrect 
state-action rules, it can negatively impact the learning performance. The main goal of this 
paper is to introduce a methodology for correcting (optimizing) the inaccurate a priori expert 
knowledge and as an additional benefit of optimization, to reduce the size of the Q-function 
representation fuzzy rule-base during the learning phase. The paper also introduces some 
examples how the quality of expert knowledge influences the HFRIQ-learning performance 
on a well-known reinforcement learning benchmark problem. 
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1 Introduction 
Due to the increasing computational capacity and its integration into everyday 
devices, the fields of artificial intelligence [25], machine learning [10] [23], and the 
exploration of opportunities offered by these methods are becoming increasingly 
relevant and significant. Machine learning (ML) is a collection of methods that learn 
through experience, gradually building the knowledge base of the system over 
iterations. 

In the case of reinforcement learning (RL) [26], the system shapes its behavior 
based on only reinforcement (reward or punishment) information. The RL methods 
receive feedback (reinforcement) for the execution of certain decisions or sequences 
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of decisions. The main idea of the RL methods is not only to utilize feedback for 
shaping the current actions of the agent but also to improve the quality of the future 
decisions. The knowledge base representation (Q-function) can be different, in the 
case of the traditional Q-learning [42] and the Deep Q-learning [15] the Q-function 
is represented by a Q-table and in the case of the fuzzy (and fuzzy rule-interpolation 
[17] [22]) model based RL methods [2] [6] [11] the Q-function is described by a 
fuzzy rule-base. In these methods, the learning process begins with an empty 
knowledge base and the system incrementally fills it according to the feedback 
(reinforcements) from the environment. 

The “Heuristically Accelerated Reinforcement Learning” (HARL) methods [7] 
such as HA-Q(λ), HA-SARSA(λ) and HA-TD(λ) [8] [9] provide ways for injecting 
external knowledge into the learning system. In these cases, the preliminary 
knowledge is defined by a 𝐻𝐻𝑡𝑡(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) heuristic function. This heuristic function can 
be considered a policy modifier (𝐻𝐻: 𝑆𝑆 × 𝐴𝐴 → 𝑅𝑅) because it determines which action 
𝑎𝑎𝑡𝑡 is preferred to be executed in the state 𝑠𝑠𝑡𝑡 at the given time 𝑡𝑡 [9]. There are also 
methods that reuse (after the learning) the knowledge created during the learning 
phase, such as "Transfer Learning" [36] and multi-agent systems [27]. In [1], a 
policy modifier for action selection is proposed that incorporates human knowledge 
(by a user-tunable parameter) into the RL system, enhancing the learning 
performance through the expert knowledge. Furthermore, other authors also 
recommend incorporating expert knowledge into machine learning methods, such 
as Deep Neural Networks (DNN), RL [44] and Deep RL systems [3] [14] [28]. The 
role of the human (expert) factor in machine learning (“human-in-the-loop” ML) 
methods are detailed in [43]. Generally, RL systems are used to tune external 
knowledge bases, but the RL system injected knowledge itself is not the subject of 
the optimization. The paper [45] introduces an automatic cloud-based database 
(CDB) tuning system (CDBTune) which optimizes the high-dimensional 
configuration space using deep RL. In [13] the “XTuning” system is introduced, 
which is an expert database tuning system that applies reinforcement learning (RL) 
techniques. XTuning incorporates a correlation knowledge model to eliminate 
unnecessary training costs and employs a multi-instance mechanism (MIM) for 
fine-grained tuning across diverse workloads. 

The HFRIQ-learning (Heuristically Accelerated Fuzzy Rule-Interpolation based Q-
learning) system [34] is a HARL method in which the external, a priori expert 
knowledge is given by fuzzy production rules having state-action format [30].  
The quality of the initial expert rules can influence the efficiency of the learning 
process. If the expert knowledge base contains inaccuracies (or incorrect 
information), it can adversely affect the efficiency of the learning [29] [31]. 

The main goal of this paper is to improve the HFRIQ-learning (introduced in [34]) 
by introducing a methodology, which is suitable for locating and fixing (tuning) the 
inaccurate expert rules during the learning process and also able to validate the 
initial expert rules by comparing them to the tuned final expert rules after the 
learning phase. For demonstrating the effect of the expert knowledge quality on the 
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improved HFRIQ-learning performance some examples of a well-known 
reinforcement learning benchmark problem will be also discussed in the paper. 

2 The Heuristically Accelerated Fuzzy Rule 
Interpolation based Q-learning 

The “Heuristically Accelerated Fuzzy Rule-Interpolation based Q-learning” 
(HFRIQ-learning) [34] is an extension of the “Fuzzy Rule-Interpolation based Q-
learning” (FRIQ-learning) [39] by the capability of embedding [34] external expert 
knowledge into the system. This method applies the "FIVE" (Fuzzy Rule 
Interpolation based on Vague Environment) [20] Fuzzy Rule Interpolation (FRI) 
method for representing the Q-function describing the state-action space as a 
continuous function. The “FIVE” [20] is an application-oriented FRI method, its 
low computational demands [4], [5], makes it suitable for real-time applications and 
robotic control. Additionally, being an FRI method it also allows sparse fuzzy rule 
base as a knowledge representation, further reducing the system complexity 
compared to other classical fuzzy inference methods (e.g. the Zadeh-Mamdani CRI) 
[21]. 

The knowledge base of the HFRIQ-learning system is represented by a sparse fuzzy 
rule-base. The form of a rule 𝑟𝑟𝑖𝑖  (𝑖𝑖 ∈ [1,𝑚𝑚]) in the rule-base 𝑅𝑅 of size 𝑚𝑚 is as follows 
[39]: 

𝑟𝑟𝑖𝑖: 𝑰𝑰𝑰𝑰 𝑠𝑠1 𝑖𝑖𝑠𝑠 𝑆𝑆1𝑖𝑖  𝑨𝑨𝑨𝑨𝑨𝑨 𝑠𝑠2 𝑖𝑖𝑠𝑠 𝑆𝑆2𝑖𝑖  𝑨𝑨𝑨𝑨𝑨𝑨…  𝑨𝑨𝑨𝑨𝑨𝑨 𝑠𝑠𝑛𝑛 𝑖𝑖𝑠𝑠 𝑆𝑆𝑛𝑛𝑖𝑖   𝑨𝑨𝑨𝑨𝑨𝑨 𝑎𝑎 𝑖𝑖𝑠𝑠 𝐴𝐴𝑖𝑖  𝑻𝑻𝑻𝑻𝑻𝑻𝑨𝑨 𝑄𝑄�(𝒔𝒔,𝑎𝑎) = 𝑞𝑞𝑖𝑖 (1) 

where 𝑆𝑆𝑗𝑗𝑖𝑖 is the fuzzy set of the 𝑖𝑖-th (𝑖𝑖 ∈ [1,𝑚𝑚]) rule in the 𝑗𝑗-th (𝑗𝑗 ∈ [1,𝑛𝑛]) state 
dimension in the 𝑛𝑛-dimensional state space 𝑺𝑺, 𝒔𝒔 ∈ 𝑺𝑺 is the 𝑛𝑛-dimensional state 
observation, 𝑠𝑠𝑗𝑗 is the 𝑗𝑗-th dimension of the state observation 𝒔𝒔, 𝐴𝐴𝑖𝑖 is the fuzzy set of 
the one-dimensional action universe (𝑈𝑈) for the 𝑖𝑖-th rule, 𝑎𝑎 ∈ 𝑈𝑈 is the action, 
𝑄𝑄�(𝒔𝒔, 𝑎𝑎) is the approximated Q-function according to the FIVE FRI [19], and 𝑞𝑞𝑖𝑖 is 
the consequent (Q-value) of the 𝑖𝑖-th rule. The Q-function is obtained by the "FIVE" 
FRI method from the Q-function fuzzy rule-base. 

The rule format of the expert knowledge base 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡  is similar to the Q-function 
fuzzy rules (1), with the difference that the antecedent of the �̂�𝑟 expert rules is the 
state, and the consequent is the state related preferred action [30]: 

 �̂�𝑟𝑖𝑖: 𝐈𝐈𝐈𝐈 𝑠𝑠1𝒊𝒊𝒔𝒔 �̂�𝑆1𝑖𝑖  𝑨𝑨𝑨𝑨𝑨𝑨 𝑠𝑠2𝒊𝒊𝒔𝒔 �̂�𝑆2𝑖𝑖  𝑨𝑨𝑨𝑨𝑨𝑨…𝑨𝑨𝑨𝑨𝑨𝑨 𝑠𝑠𝑛𝑛𝒊𝒊𝒔𝒔 �̂�𝑆𝑛𝑛𝑖𝑖  𝑻𝑻𝑻𝑻𝑻𝑻𝑨𝑨 a = �̂�𝐴𝑖𝑖 (2) 

where �̂�𝑟𝑖𝑖 is the 𝑖𝑖-th (𝑖𝑖 ∈ [1,𝑚𝑚� ]) expert rule in the 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 rule-base, �̂�𝑆𝑛𝑛𝑖𝑖 = ��̂�𝑆1𝑖𝑖 , �̂�𝑆2𝑖𝑖 , … �̂�𝑆𝑛𝑛𝑖𝑖 � 
is the 𝑛𝑛-dimensional state observation for the 𝑖𝑖-th expert rule, �̂�𝐴𝑖𝑖 is the action related 
to the �̂�𝑆𝑛𝑛𝑖𝑖  state observation, and 𝑖𝑖 (𝑖𝑖 ∈ [1,𝑚𝑚�]) is the index of the rule in the 𝑚𝑚�  expert 
rule-base. 
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Incorporation of the expert rule-base in the FRIQ-learning requires transforming the 
state-action expert rules into a state-action-Q-value (1) format. This transformation 
is a necessary step to ensure the compatibility of external knowledge with the fuzzy 
Q-function rule-base, allowing the integration of the external knowledge within the 
FRIQ-learning environment. The transformed rules will have the state and action of 
the expert rule as the antecedent and an estimated 𝑄𝑄�𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 value as the consequent.  
The estimated initial 𝑄𝑄�𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 value can be determined based on the maximum possible 
reinforcement that the environment can provide, denoted by 𝑔𝑔𝑚𝑚𝑚𝑚𝑒𝑒 [30]. The learning 
process (the incremental rule-base construction) of the HFRIQ-learning system 
begins with the merging of the 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 expert rule-base (2) and the initial (empty) 
rule-base  of the FRIQ-learning, which is the 𝑅𝑅□ corner rule-base (3). Each 𝑟𝑟𝑖𝑖□ corner 
rule having 0 consequent value [30] [39]: 

𝑟𝑟𝑖𝑖□: 𝑰𝑰𝑰𝑰 𝑠𝑠1 𝑖𝑖𝑠𝑠 𝑆𝑆1□𝑖𝑖  𝑨𝑨𝑨𝑨𝑨𝑨 𝑠𝑠2 𝑖𝑖𝑠𝑠 𝑆𝑆2□𝑖𝑖  𝑨𝑨𝑨𝑨𝑨𝑨…  𝑨𝑨𝑨𝑨𝑨𝑨 𝑠𝑠𝑛𝑛 𝑖𝑖𝑠𝑠 𝑆𝑆𝑛𝑛□𝑖𝑖   𝑨𝑨𝑨𝑨𝑨𝑨 𝑎𝑎 𝑖𝑖𝑠𝑠 𝐴𝐴□𝑖𝑖 𝑻𝑻𝑻𝑻𝑻𝑻𝑨𝑨 𝑄𝑄�(𝒔𝒔,𝑎𝑎) = 0 (3) 

where 𝑆𝑆𝑙𝑙□𝑖𝑖 ∊ [min(𝑆𝑆𝑙𝑙) , max(𝑆𝑆𝑙𝑙)] (∀𝑖𝑖 ∈ [1, 2𝑛𝑛+1],∀𝑙𝑙 ∈ [1,𝑛𝑛]) and 𝐴𝐴□𝑖𝑖 ∊
[min(𝐴𝐴) , max(𝐴𝐴)] (∀𝑖𝑖 ∈ [1, 2𝑛𝑛+1]) are the corner state, 𝑟𝑟𝑖𝑖□ ∈ 𝑅𝑅 (𝑖𝑖 ∈ [1, 2𝑛𝑛+1]) is the 𝑖𝑖-th 
corner rule and 𝑛𝑛 is the number of the state dimension. 

In cases if where is a contradicting situation arises, i.e. if an expert rule antecedent 
matches a corner rule antecedent, but their consequents are different, a single rule 
with the consequent of the transformed expert rule is inserted [34]. The initial expert 
rule-base, created previously, grows incrementally during the learning process by 
adding new rules that are generated by the system [39]. A new rule is inserted into 
the rule-base (in the state-action observation position as antecedent) if the Q-update 
value (∆𝑄𝑄�) is greater than 𝜀𝜀𝑄𝑄 (∆𝑄𝑄� > 𝜀𝜀𝑄𝑄) [33], [34] and the closest rule is considered 
to be distant. The determination of rule proximity is based on distances calculated 
for each (antecedent) dimension between the rules [33], [34]. In cases if the ∆𝑄𝑄�  
value is small (∆𝑄𝑄� < 𝜀𝜀𝑄𝑄), the entire rule-base consequent is updated in the following 
manner [40]: 

𝑞𝑞𝑖𝑖𝑘𝑘+1 =

⎩
⎪
⎨

⎪
⎧ 𝑞𝑞𝑖𝑖𝑘𝑘 + ∆𝑄𝑄�𝑘𝑘+1(𝒔𝒔,𝑎𝑎)

𝑞𝑞𝑖𝑖𝑘𝑘 + ∆𝑄𝑄�𝑘𝑘+1(𝒔𝒔, 𝑎𝑎) ∗ �1 𝛿𝛿𝑣𝑣,𝑖𝑖
𝜆𝜆⁄ � �� 1 𝛿𝛿𝑣𝑣,𝑖𝑖

𝜆𝜆⁄
𝑚𝑚

𝑖𝑖=1

��
 

if (𝒔𝒔,𝑎𝑎) = (𝒔𝒔𝑖𝑖 ,𝑎𝑎𝑖𝑖) for 
some 𝑖𝑖 

(4) 

otherwise 

where the 𝑄𝑄�𝑘𝑘+1(𝒔𝒔, 𝑎𝑎): 

𝑄𝑄�𝑘𝑘+1(𝒔𝒔, 𝑎𝑎) = 𝑄𝑄�𝑘𝑘(𝒔𝒔,𝑎𝑎) + ∆𝑄𝑄�𝑘𝑘+1(𝒔𝒔, 𝑎𝑎) 
(5) 

∆𝑄𝑄�𝑘𝑘+1(𝒔𝒔, 𝑎𝑎) = 𝛼𝛼 ∗ �𝑔𝑔�𝒔𝒔,𝑎𝑎, 𝒔𝒔′� + 𝛾𝛾 ∗ 𝑚𝑚𝑎𝑎𝑚𝑚
𝑚𝑚′𝜖𝜖𝜖𝜖

𝑄𝑄�𝑘𝑘�𝒔𝒔′, 𝑎𝑎′� − 𝑄𝑄�𝑘𝑘(𝒔𝒔,𝑎𝑎)� 
(6) 

where 𝛾𝛾 ∈ [0,1] is the discount factor, 𝛼𝛼 ∈ [0,1] is the learning rate, 𝑞𝑞𝑖𝑖𝑘𝑘+1 is the 𝑖𝑖-th 
rule conclusion in the (𝑘𝑘 + 1)-th iteration, 𝑎𝑎 is the action taken in state 𝒔𝒔, 𝒔𝒔′ is the 
newly observed state, 𝑔𝑔(𝒔𝒔,𝑎𝑎, 𝒔𝒔′) is the observed reward for the 𝒔𝒔 → 𝒔𝒔′ state transition, 
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𝑄𝑄�𝑘𝑘 and 𝑄𝑄�𝑘𝑘+1 are the Q-values approximated by the FIVE FRI in the 𝑘𝑘-th and (𝑘𝑘 + 1)-
th iteration, respectively [39]: 

𝑄𝑄�(𝒔𝒔, 𝑎𝑎) =

⎩
⎪
⎨

⎪
⎧ 𝑞𝑞𝑖𝑖

���𝑞𝑞
𝑖𝑖

(𝛿𝛿𝑣𝑣𝑖𝑖 )𝜆𝜆
� � �� 1

�𝛿𝛿𝑣𝑣
𝑗𝑗�
𝜆𝜆�

𝑚𝑚

𝑗𝑗=1

�� �
𝑚𝑚

𝑖𝑖=1

 

if (𝒔𝒔,𝑎𝑎) = (𝒔𝒔𝑖𝑖,𝑎𝑎𝑖𝑖) 
for some 𝑖𝑖, 

otherwise 
(7) 

where 𝑞𝑞𝑖𝑖 is the conclusion of the 𝑖𝑖-th (𝑖𝑖 ∈ [1,𝑚𝑚]) rule, (𝒔𝒔, 𝑎𝑎) is the observation, 𝜆𝜆 is 
the Shepard parameter, the 𝑚𝑚 is the number of rules and the 𝛿𝛿𝑣𝑣𝑖𝑖  is the scaled distance 
[20] between the (𝐬𝐬, a) observation and the antecedent of the 𝑖𝑖-th rule (𝒔𝒔𝒊𝒊, 𝑎𝑎𝑖𝑖): 

𝛿𝛿𝑣𝑣𝑖𝑖 = 𝛿𝛿𝑣𝑣 �(𝒔𝒔, 𝑎𝑎), (𝒔𝒔𝒊𝒊, 𝑎𝑎𝑖𝑖)� = ���� 𝑣𝑣𝑗𝑗(𝑠𝑠𝑗𝑗)𝑑𝑑𝑠𝑠𝑗𝑗
𝑠𝑠𝑗𝑗

𝑠𝑠𝑗𝑗
𝑖𝑖

�
2

+ �� 𝑣𝑣(𝑎𝑎)𝑑𝑑𝑎𝑎
𝑚𝑚

𝑚𝑚𝑖𝑖
�
2𝑛𝑛

𝑗𝑗=1

�

1/2

 (8) 

where (𝒔𝒔, 𝑎𝑎) is the state-action observation, (𝒔𝒔𝒊𝒊, 𝑎𝑎𝑖𝑖) state-action antecedent of the 𝑖𝑖-th 
rule,  𝑠𝑠𝑗𝑗  is the 𝑗𝑗-th  (𝑗𝑗 ∈ [1,𝑛𝑛]) dimension of the 𝑛𝑛-dimensional state space universe, 
𝑠𝑠𝑗𝑗𝑖𝑖 is the 𝑗𝑗-th state dimension of the 𝑖𝑖-th rule, 𝑎𝑎𝑖𝑖 is the action universe of the 𝑖𝑖-th rule, 
𝑣𝑣𝑗𝑗(𝑠𝑠𝑗𝑗) is the scaling function of the 𝑠𝑠𝑗𝑗 state universe, and the 𝑣𝑣(𝑎𝑎) is the scaling 
function of the 𝑈𝑈 action universe. The fuzzy sets are described by the scaling 
functions of the corresponding universes [18], [20]. 

The incremental rule-base construction phase (the learning process) ends when no 
new incremental rules are added to the rule-base and the Q-update value becomes 
relatively low [30], [40]. After the learning phase, the size of the incrementally 
constructed rule-base can be reduced using offline rule-base reduction strategies 
[32], [37], [38]. These reduction methods [32], [37], [38] aim to improve the 
efficiency of the FRIQ-learning (and HFRIQ-learning) by eliminating the redundant 
rules from the gained Q-function rule-base. 

3 The Knowledge Base Optimization 
The HFRIQ-learning (and the FRIQ-learning) tunes (updates) the consequents (Q-
values) of the fuzzy rules (knowledge base) based on the (4) update rule. However, 
the antecedent part of the newly added rules remain unchanged throughout the entire 
learning process. The antecedents of the newly added rules are created at the state-
action point of the current observation. Consequently, the rules can be located at 
any state-action point. In case if any of the expert-defined production rules assign 
an incorrect action value to a state (i.e. the expert rule-base is only partially correct), 
the antecedent of the transformed expert rules will also be placed to an incorrect 
state-action antecedent position. 
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The partially correct (or completely incorrect) expert rule-base can have a negative 
impact on the efficiency of the learning process [29], [31]. For correcting the 
incorrectly defined rules, in this paper a tuning method is suggested, which can 
optimize the rules by aligning the antecedents to the correct state-action positions. 
This way, both the consequent part (as introduced in Chapter II.) and the antecedent 
part of the rules can be adjusted and corrected. 

The improved HFRIQ-learning [34] algorithm, suggested in this paper, built upon 
the following steps: 

• During the learning phase (incremental rule base construction), the initial 
rule-base (the corner and the transformed expert rules) is expanded with 
newly added rules by the system 

• If there is no existing rule at the given state-action rule point, and even the 
closest rule is considered to be far then the system places a new rule at the 
current observation position. 

o The closeness is determined based on the proximity measure 
between rules and an allowed minimum rule distance [33] (which 
defines when two rules are considered close to each other) 

o The calculation of the distance between rules is based on the 
distance in each antecedent dimension [33] 

• If there is an existing rule close to the observed state-action point, the rules 
in the rule-base are fine-tuned. The tuning is based on a gradient-based 
optimization of the rule position (antecedent and consequent) update 
according to the gradient of the Q-function 

• In case if two rules are getting close to each other (due to the rule position 
change), they are merged into a single rule, to reduce the size of the rule-
base during the learning phase 

3.1 The Gradient Descent-based Rule-base Optimization 
The main idea of the suggested rule-base optimization is that, in cases if an existing 
rule is found close to the observation, instead of a new rule insertion, the antecedent 
and consequent parts of the close rules are tuned. The applied optimization 
technique is the gradient descent (GD) method. The gradient descent method 
iteratively updates the antecedents and consequents of the fuzzy rules based on the 
gradient of the approximated Q-function with respect to partial derivatives. By 
iteratively updating the parameters according to the gradient of the Q-function, the 
algorithm can fine-tune the rules to align the state-action antecedent positions. For 
each rule, the gradient descent method calculates the partial derivatives of the Q-
function with respect to the antecedent (states and action) and consequent (Q-value). 
These derivatives provide the direction of the changes for each parameter to 
minimize the error. In this case, the error can be considered the TD-error (Temporal 
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Difference error), like in case of the „Deep Q-learning Network” (DQN) method 
[12]: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑇𝑇𝑟𝑟 = 𝑔𝑔(𝒔𝒔, 𝑎𝑎, 𝒔𝒔′) + 𝛾𝛾 ∗ max
𝑚𝑚′𝜖𝜖𝜖𝜖

𝑄𝑄�𝑘𝑘(𝒔𝒔′, 𝑎𝑎′) −𝑄𝑄�𝑘𝑘(𝒔𝒔,𝑎𝑎) (9) 

The MSE (Mean Squared Error, which aims to minimize) applied in the gradient 
descent can be calculated as follows: 

𝑀𝑀𝑆𝑆𝑀𝑀 =
1
𝑚𝑚��

(𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑇𝑇𝑟𝑟)2
𝑚𝑚�

𝑖𝑖=1

 (10) 

The tuning of the antecedents and the consequents of the fuzzy rules based on the 
gradient descent updating rule: 

𝑚𝑚𝑘𝑘+1 = 𝑚𝑚𝑘𝑘 − ∇𝐹𝐹(𝑚𝑚𝑘𝑘) ∗ 𝛼𝛼 (11) 

where 𝑚𝑚𝑘𝑘+1 is the new value in the 𝑘𝑘 + 1-th iteration, 𝑚𝑚𝑘𝑘 is the old value in the 𝑘𝑘-th 
iteration, 𝛼𝛼 is the learning rate, 𝐹𝐹 is the function and ∇𝐹𝐹(𝑚𝑚𝑘𝑘) is the gradient of the 𝐹𝐹 
function at the 𝑚𝑚𝑘𝑘. The ∇𝐹𝐹(𝑚𝑚𝑘𝑘) partial derivatives can be determined according to 
the chain rule, as it can be expressed as follows: 

∇𝐹𝐹(𝑚𝑚𝑘𝑘) =
𝜕𝜕𝑀𝑀𝑆𝑆𝑀𝑀(𝑚𝑚𝑘𝑘)

𝜕𝜕𝑚𝑚𝑘𝑘
=
𝜕𝜕(𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑇𝑇𝑟𝑟)2

𝜕𝜕𝑚𝑚𝑘𝑘
= 2 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑇𝑇𝑟𝑟 ∗

𝜕𝜕𝑄𝑄�𝑘𝑘(𝒔𝒔,𝑎𝑎)
𝜕𝜕𝑚𝑚𝑘𝑘

 (12) 

Substituting ∇𝐹𝐹(𝑚𝑚𝑘𝑘) into (11) according to (12), the 𝑚𝑚𝑘𝑘+1 can be expressed as 
follows: 

𝑚𝑚𝑘𝑘+1 = 𝑚𝑚𝑘𝑘 − �2 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑇𝑇𝑟𝑟 ∗
𝜕𝜕𝑄𝑄�𝑘𝑘(𝒔𝒔,𝑎𝑎)
𝜕𝜕𝑚𝑚𝑘𝑘

� ∗ 𝛼𝛼 
(13) 

The update rule (13), applied to the partial derivatives of the 𝑄𝑄�𝑘𝑘(𝒔𝒔,𝑎𝑎) for each 𝒔𝒔, 𝑎𝑎 
and 𝑞𝑞 variables, results in the new 𝒔𝒔𝑘𝑘+1 state, the new 𝑎𝑎𝑘𝑘+1 action, and the new 
𝑞𝑞𝑘𝑘+1 consequent values, which can be calculated as follows: 

𝒔𝒔𝑘𝑘+1 = 𝒔𝒔𝑘𝑘 − �2 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑇𝑇𝑟𝑟 ∗
𝜕𝜕𝑄𝑄�(𝒔𝒔, 𝑎𝑎)

𝜕𝜕𝒔𝒔
� ∗ 𝛼𝛼 

(14) 

𝑎𝑎𝑘𝑘+1 = 𝑎𝑎𝑘𝑘 − �2 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑇𝑇𝑟𝑟 ∗
𝜕𝜕𝑄𝑄�(𝒔𝒔, 𝑎𝑎)
𝜕𝜕𝑎𝑎 � ∗ 𝛼𝛼 

(15) 

𝑞𝑞𝑘𝑘+1 = 𝑞𝑞𝑘𝑘 − �2 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑇𝑇𝑟𝑟 ∗
𝜕𝜕𝑄𝑄�(𝒔𝒔, 𝑎𝑎)
𝜕𝜕𝑞𝑞 � ∗ 𝛼𝛼 

(16) 

3.1.1 Selecting the Rules to be Tuned 

In the suggested optimization process, it is necessary to identify which rules of the 
fuzzy rule-base should be selected for optimization. During the learning process, 
the rules are tuned if the Q-update value is considered significant and if there is an 
existing rule already close to the state-action observation. For rule base tuning 
different versions of the gradient method [16] can be applied, one well-known 



T. Tompa et al. Knowledge Base Optimization in the HFRIQ-Learning 

‒ 100 ‒ 

approach is the gradient descent method, which considers all data points during each 
iteration to calculate the error function and derivatives. Another variation, called 
Stochastic Gradient Descent (SGD), randomly selects data points for determining 
gradients and error functions in each iteration. In case of fuzzy rule base 
optimization, the sample points can be considered fuzzy rule points and the goal of 
the minimization of the TD-error (9). In the case if all the fuzzy rule points are tuned 
in each iteration step, the convergence of the approximated Q-function could be 
instable. The reason of this instability is inherited from the exploration-exploitation 
manner as the HFRIQ-learning discovers the Q values the state-action space.  
The state-action values have higher approximated Q value gets more trials, than 
which have lower Q values. Hence, those fuzzy rule points in the state-action space, 
which are rarely explored and updated are deteriorated by the updates of the 
frequently explored regions, if all the fuzzy rule points are updated in each iteration 
step. Consequently, simultaneous tuning of all the fuzzy rule points is not feasible. 
A possible solution is that in each iteration step only the fuzzy rules close to the 
observed state-action point are selected for tuning [33]. This method stabilizes the 
Q-function, updating the fuzzy rule points of the Q-function in the correct direction, 
without changing the rules that are far from the state-action observation point, 
where the update is required. 

3.2 The Distance-based Rule Base Reduction 
During the learning phase, as a result of the previously introduced rule-base tuning, 
the state-action positions (antecedents) of the rules can move in the state-action 
space (not only their consequents are changing). This can lead to situations, when 
two or more rules become close to each other. The close rules have similar 
antecedents and consequents, thus they describe similar information. By merging 
similar rules, the size of the rule-base can be reduced. To prevent redundancy and 
avoid close rules, a distance-based rule-base reduction technique is proposed for 
identifying and merging similar rules during the learning phase. 

The merging of the rules is based on a distance threshold called 𝑨𝑨𝒅𝒅𝒅𝒅 [33]. The 𝑨𝑨𝒅𝒅𝒅𝒅 
is a vector that contains the distance thresholds for each state, action, and Q-value 
dimensions: 

𝑨𝑨𝒅𝒅𝒅𝒅 = [𝑑𝑑𝑡𝑡𝑟𝑟1,𝑑𝑑𝑡𝑡𝑟𝑟2, … ,𝑑𝑑𝑡𝑡𝑟𝑟𝑛𝑛 ,𝑑𝑑𝑡𝑡𝑟𝑟𝑈𝑈,𝑑𝑑𝑡𝑡𝑟𝑟𝑄𝑄] (17) 

Where 𝑑𝑑𝑡𝑡𝑟𝑟1,𝑑𝑑𝑡𝑡𝑟𝑟2, … ,𝑑𝑑𝑡𝑡𝑟𝑟𝑛𝑛  are the distance thresholds for the states (𝑛𝑛 is number of 
the state variables), 𝑑𝑑𝑡𝑡𝑟𝑟𝑈𝑈 is the distance thresholds for the action and 𝑑𝑑𝑡𝑡𝑟𝑟𝑄𝑄 is the 
distance thresholds for the Q-value dimension. To determine the distance threshold 
values for states, action, and Q-value dimensions, a fraction value of their universes, 
referred as the dR distance rate, is applied. The dR is a constant, determined by an 
expert and can be different for each antecedent (states, actions) and consequent (Q-
value) universes. In other words, the distance threshold values represent a portion 
of the length of each dimension: 



Acta Polytechnica Hungarica Vol. 21, No. 10, 2024 

‒ 101 ‒ 

𝑑𝑑𝑡𝑡𝑟𝑟𝑗𝑗 =
𝑙𝑙𝑒𝑒𝑛𝑛𝑙𝑙𝑡𝑡ℎ(𝑆𝑆𝑗𝑗)

dR𝑺𝑺
 , 𝑗𝑗 ∈ [1,𝑛𝑛] (18) 

𝑑𝑑𝑡𝑡𝑟𝑟𝑈𝑈 = 𝑙𝑙𝑒𝑒𝑛𝑛𝑙𝑙𝑡𝑡ℎ(𝜖𝜖)
dR𝑈𝑈

, 𝑗𝑗 = 𝑛𝑛 + 1 (19) 

 𝑑𝑑𝑡𝑡𝑟𝑟𝑄𝑄 = 𝑙𝑙𝑒𝑒𝑛𝑛𝑙𝑙𝑡𝑡ℎ(𝑄𝑄)
𝑑𝑑𝑑𝑑𝑞𝑞

  (20) 

Where dR𝑺𝑺, dR𝜖𝜖 and dRq are the distance rates for the states (𝑺𝑺), action (𝑎𝑎) and Q-
value (𝑞𝑞) universe, 𝑛𝑛 is the number of the state dimensions and 𝑗𝑗 is the running 
variable of the 𝑛𝑛. The length of the universes is determined as the follows: 

𝑙𝑙𝑇𝑇𝑛𝑛𝑔𝑔𝑡𝑡ℎ�𝑆𝑆𝑗𝑗� =  �max(𝑆𝑆𝑗𝑗) − min(𝑆𝑆𝑗𝑗)�, 𝑗𝑗 ∈ [1,𝑛𝑛] (21) 

𝑙𝑙𝑇𝑇𝑛𝑛𝑔𝑔𝑡𝑡ℎ(𝑈𝑈) = |max(𝑈𝑈) − min(𝑈𝑈)|,  (22) 

 𝑙𝑙𝑇𝑇𝑛𝑛𝑔𝑔𝑡𝑡ℎ(𝑄𝑄) = |max(𝑄𝑄) − min(𝑄𝑄)|  (23) 

Where max(𝑆𝑆𝑗𝑗) is the maximum (largest) and min(𝑆𝑆𝑗𝑗) is the minimum (smallest) 
element of the 𝑗𝑗-th ( 𝑗𝑗 ∈ [1,𝑛𝑛]) 𝑆𝑆𝑗𝑗 state and 𝑈𝑈 action universe. 

The 𝑨𝑨𝒅𝒅𝒅𝒅 distance thresholds serve as criteria for determining when rules are close 
enough to be considered similar and eligible for merging during the learning phase. 
Two rules can be considered close if distance between them calculated in each 
universe is less than the corresponding distance thresholds in all universes: 

∃
𝑡𝑡,𝑒𝑒∈[1,𝑚𝑚+𝑚𝑚� ]

𝑡𝑡, 𝑝𝑝 ∀
𝑗𝑗∈[1,𝑛𝑛+1]

�𝑑𝑑𝑗𝑗(𝑡𝑡, 𝑝𝑝) < 𝑑𝑑𝑡𝑡𝑟𝑟𝑗𝑗� and (𝑑𝑑𝑄𝑄(𝑡𝑡, 𝑝𝑝) < 𝑑𝑑𝑡𝑡𝑟𝑟𝑄𝑄) (24) 

where 𝑑𝑑𝑡𝑡𝑟𝑟𝑗𝑗 ,𝑑𝑑𝑡𝑡𝑟𝑟𝑄𝑄 (𝑗𝑗 ∈ [1,𝑛𝑛 + 1]) are the distance thresholds, 𝑛𝑛 is the number of the 
antecedent universes, 𝑡𝑡, 𝑝𝑝 ∈ [1,𝑚𝑚 + 𝑚𝑚�] are the indexes of two rules in the 𝑚𝑚 + 𝑚𝑚�  
sized rule-base, 𝑑𝑑𝑗𝑗(𝑡𝑡, 𝑝𝑝) is the distance between the rules indexed by 𝑡𝑡 and 𝑝𝑝 in the 
𝑗𝑗-th antecedent universe, and 𝑑𝑑𝑄𝑄(𝑡𝑡, 𝑝𝑝) is the distance between the rules indexed by 𝑡𝑡 
and 𝑝𝑝 in the consequent (Q-value) universe. The distance between two rules indexed 
by 𝑡𝑡 and 𝑝𝑝 in the rule-base can be determined as follows: 

𝑑𝑑𝑗𝑗(𝑡𝑡, 𝑝𝑝) = �𝑠𝑠𝑗𝑗𝑡𝑡 − 𝑠𝑠𝑗𝑗
𝑒𝑒�, 𝑗𝑗 ∈ [1,𝑛𝑛] (25) 

𝑑𝑑𝑗𝑗(𝑡𝑡, 𝑝𝑝) = |𝑎𝑎𝑡𝑡 − 𝑎𝑎𝑒𝑒|, 𝑗𝑗 = 𝑛𝑛 + 1 (26) 

𝑑𝑑𝑄𝑄(𝑡𝑡, 𝑝𝑝) = |𝑄𝑄𝑡𝑡 − 𝑄𝑄𝑒𝑒|  (27) 

where 𝑠𝑠𝑗𝑗𝑡𝑡 is the 𝑗𝑗-th (𝑗𝑗 ∈ [1,𝑛𝑛]) antecedent fuzzy set of the rule indexed by 𝑡𝑡, 𝑠𝑠𝑗𝑗
𝑒𝑒 is 

the 𝑗𝑗-th antecedent fuzzy set of the rule indexed by 𝑝𝑝, 𝑎𝑎𝑡𝑡 is the action of the rule 
index by 𝑡𝑡, 𝑎𝑎𝑒𝑒 is the action of the rule indexed by 𝑝𝑝, 𝑄𝑄𝑡𝑡 is the consequent of the rule 
indexed by 𝑡𝑡, 𝑄𝑄𝑒𝑒 is the consequent of the rule indexed by 𝑝𝑝, and | | denotes the 
absolute value. Consequently, the distance between the 𝑡𝑡-th and 𝑝𝑝-th indexed rules 
is not represented by a single value but rather as a vector with multiple elements. 
This vector includes distance values for each antecedent and consequent dimension. 
The following figure illustrates the distances between the 𝑟𝑟𝑡𝑡 and the 𝑟𝑟𝑒𝑒 rules: 
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Figure 1 

The distances between the 𝑟𝑟𝑡𝑡 and the 𝑟𝑟𝑒𝑒 rules: 
The 𝑑𝑑𝑗𝑗(𝑡𝑡, 𝑝𝑝) are the distances in the antecedent universes and 𝑑𝑑𝑄𝑄(𝑡𝑡, 𝑝𝑝) is the distance in the 

consequent universe between the 𝑝𝑝 and 𝑡𝑡 indexed 𝑟𝑟 rules 

3.2.1 Determination the Type of the New Merged Rule 

In the HFRIQ-learning system 3 types of fuzzy rules are distinguished: the expert 
rules ��̂�𝑟𝑖𝑖 ∈ 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡�, the rules crated by the system (𝑟𝑟𝑖𝑖 ∈ 𝑅𝑅) and the corner rules 
(𝑟𝑟□ ∈ 𝑅𝑅). Based on the type of the source rules (expert, corner or new) the type of 
the new merged rule must be determined. Since the rules (knowledge) defined by 
the expert presumably describe correct knowledge about final solution, they are 
considered with greater importance. This importance determines the type of the new 
merged rule and also controls if the source rules are merged or not. 

In the case if two rules are close to each other, the rule merging, suggested in this 
paper, is performed as follows: 

• If one of the two source rules is an expert type and the other is a system-
generated new rule, then the merged rule will be considered an expert type 
rule. 

• If both of the two source rules are expert type rules, the new merged rule 
will also be an expert type rule. 

• If both of the two source rules are newly inserted rules by the system, then 
the new merged rule will be marked as a newly inserted rule. 

• It is a special case, when one of the two source rules is corner type rule. 
The importance of the corner rules is greater in the process of rule base 
construction due to the interpolation manner of the applied FRI "FIVE" 
method. Therefore, in this case, no rule merging is performed, and the 
antecedent of the corner rule is not modified. 

Equation (28) summarizes the type of the 𝑟𝑟𝑒𝑒𝑒𝑒𝑑𝑑 merged rule that is created after 
merging the source rules. The "⊔" operator denotes the merging of the two source 
rules, and the "→" operator indicates the result of the rule merging: 

 𝑟𝑟𝑡𝑡  𝑟𝑟𝑒𝑒  𝑟𝑟𝑒𝑒𝑒𝑒𝑑𝑑 (28) 
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𝑟𝑟 ⊔ �̂�𝑟 → �̂�𝑟 
�̂�𝑟 ⊔ �̂�𝑟 → �̂�𝑟 
𝑟𝑟 ⊔ 𝑟𝑟 → 𝑟𝑟 
𝑟𝑟□ ⊔ 𝑟𝑟 → 𝑟𝑟□ 
𝑟𝑟□ ⊔ �̂�𝑟 → 𝑟𝑟□ �̂�𝑟 

All the rules in the system are marked by a unique identifier for tracking the 
movement of the rules during the optimization. This enables the comparison 
between the expert knowledge base obtained after the tuning process and the expert 
knowledge base defined before the learning process. 

4 Application Example 
The efficiency of the proposed improved HFRIQ-learning system is investigated 
using a classic reinforcement learning benchmark example, the “Mountain car” 
simulation scenario. 

In this application example, the agent is a car, and its environment is a steep valley. 
The car is positioned in the middle of the steep valley at the start of the learning 
process. The goal of the agent is to navigate from the middle of the steep valley to 
the hilltop located at the top of the valley. In this example, the state space is 
described by two variables and the action space has one variable: 

• position of the car: 𝑠𝑠1 ∊ [−1.5,0.5] 
• velocity of the car: 𝑠𝑠2 ∊ [−0.07,0.07] 

• movement (right, left, neutral) of the car: 𝑎𝑎 ∊ [−1,0,1] 

The reward function was kept simple, the system gives 1000 immediate reward if 
the agent reaches the hilltop, otherwise the immediate reward is -10. The parameters 
of the improved HFRIQ-learning are the following: 

• 𝛼𝛼 = 0.5 

• 𝛾𝛾 = 0.99 
• Number of iterations in an episode: 2000 
• Gradient method 𝛼𝛼 = 0.01 
• Insertion of a new rule, the values of the 𝑑𝑑𝑅𝑅 parameters, which determine 

the minimum distance between rules, are defined:  
o dR𝑺𝑺 = dR𝜖𝜖 = 40 

• The values of the 𝑑𝑑𝑅𝑅 parameters for the distance-based rule-base reduction 
method applied during the learning process: 

o dR𝑺𝑺 = 15, dR𝜖𝜖 = 15, dR𝑞𝑞 = 100 
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To investigate the effectiveness of the proposed knowledge base optimization in the 
improved HFRIQ-learning, three different run cases were defined: 

I. Original FRIQ-learning [39], without expert knowledge base 
II. The previous (I. case), enhanced with the expert knowledge base, without the 

proposed knowledge base optimization method (original HFRIQ-learning, 
introduced in [34]). This run case contains four additional cases depending on 
the type of the injected expert rule-base: 

        a) correctly defined expert rule base 
        b) fragment of the correctly defined (a.) expert rule base 
        c) partially incorrect defined expert rule base 
        d) "randomly" generated expert rule base 
III. The improved HFRIQ-learning case, enhanced with the expert knowledge 

base applied the proposed knowledge base optimization (3.1 chapter) and the 
distance-based rule base reduction (3.2 chapter) methods. This run still 
contains four additional cases (a.-d.) depending on the type of expert rule-
base introduced in the II. case. 

The correctly defined expert rule-base (III.a.) is obtained after applying the rule-
base reduction method III. introduced in [38], to the complete rule base with 110 
rules. This correct expert rule-base (after the reduction) contains 17 state-action 
rules, having correct action in their states. The fragment of the correct expert rules 
(required for II.b. and III.b.) were randomly selected 10 rules from the 17 correct 
expert rules. The resulting expert rule-base is still correct but smaller (10 rules) than 
the previous case (17 rules). The partially incorrect expert rule-base (II.c. and III.c.) 
is obtained by modifying the action of 6 rules from the correct (17 rules) expert 
rule-base. The modified 6 rules can be considered incorrect, because they involve 
modified and thus incorrect actions for their state points. In the last case (II.d. and 
III.d.), the expert rule-base contains 17 rules having randomly generated states and 
actions. 

The comparison of the different run cases (I.-III.) is based on the convergence speed 
(the number of episodes required for learning) and the size of the knowledge base 
(number of the fuzzy rules in the rule base). 

The results are summarized in following table: 

Table 1 
The average results in different run cases 

Run 
case 

Convergence speed 
(number of episodes) 

Size of the rule-base 
(number of rules) 

I. 29 110 
II.a. 10 124.3 
II.b. 10.4 114.3 
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II.c. 11.7 120.1 
II.d. 26.6 124.4 
III.a. 1 79 
III.b. 9 81 
III.c. 20 88 
III.d. 37 86 

In the case (III.a.), where the simulation ran with the correctly defined expert rule-
base, the system significantly converged faster (within a single episode) than the 
original FRIQ-learning version, and the number of rules decreased from 110 to 79. 
This is because the system did not need to tune the expert knowledge base (it was 
correct), and the number of rules was also reduced during the learning process by 
the suggested distance-based rule-base reduction method. In case having the 
fragment of the correctly defined expert rules (III.b.), the system converged in 9 
episodes with 81 rules, requiring slightly more episodes than the previous run. 
When the simulation ran with partially incorrect expert rules (III.c. having some 
incorrect rules in the expert knowledge base) the proposed method needed 20 
episodes to correct the incorrectly defined expert rule-base. In the last case, when a 
completely incorrect initial knowledge base was injected into the learning system 
(III.d.), the system still converged, but it needed 37 episodes (with 2000 iterations 
per episode) to tune (modify) the incorrect expert rules. 

Based on the results, it can be concluded that the convergence speed of the learning 
process (and the size of the final rule-base) is significantly influenced by the quality 
of the injected expert defined state-action rules. The reason for this is that in the 
case of an incorrect (or partially incorrect) expert rule-base, the incorrect rules are 
also needed to be corrected (tuned). 

The expert defined 𝑑𝑑𝑅𝑅 distance thresholds applied for rule creation and rule base 
reduction have also effect on the performance. Lower values increase the number 
of the rules, higher values can ruin the model convergence. 

Before learning and after the learning phase results for the worst-case scenario 
(III.d. when a randomly generated expert rule-base is injected) of the proposed 
improved HFRIQ-learning are introduced on (Table 2) and (Table 3). 

Table 2 
The “randomly” generated (incorrect) expert rules before the learning 

R# 1 2 3 4 5 6 7 8 9 
s1 -0.475 -0.5 -0.475 -0.475 -0.27 -0.27 -0.27 -0.475 -0.475 
s2 0 0 -0.014 0.014 0 -0.014 0 -0.042 0 
a 1 -1 -1 0 -1 0 -1 1 1 

 
R# 10 11 12 13 14 15 16 17 
s1 -0.475 -0.065 0.14 -0.27 -0.885 0.885 -0.065 -1.09 
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s2 0 0 -0.014 -0.042 0.042 0.042 0.042 0.042 
a -1 0 1 -1 -1 1 0 -1 

Table 3 
The “randomly” generated (incorrect) expert rules after the learning: the tuned expert rule-base 

R# 1 2 3 4 5 6 7 8 9 
s1 

x x x x x x 
-0.52 

x 
-0.39 

s2 -0.04 0.05 
a -1 1 

 
R# 10 11 12 13 14 15 16 17 
s1 

x 
-0.21 -0.47 -0.31 

x 
0.885 

x 
-0.81 

s2 -0.03 -0.016 -0.03 0.042 0.03 
a 0 1 -1 1 -1 

Applying the proposed knowledge base optimization (3.1) and the distance-based 
rule-base reduction (3.2) methods, only 7 (see Table 3) out of the 17 randomly 
generated expert rules (see Table 2) are retained and 6 of them were significantly 
tuned. Only expert rule (rule no 15th) remained unchanged. Therefore, it can be 
concluded that from the randomly generated expert rule-base, only the 15th rule 
could be considered correctly defined. The expert rules marked by "x" on Table 2 
were removed during the learning, by merging them to another expert rules during 
the proposed rule base reduction. These removed rules can be considered redundant 
rules. Based on simulation, it can be concluded that the proposed rule base tuning 
and the rule base reduction methods in the improved HFRIQ-learning allows the 
tuning (fixing) of the injected expert knowledge base in cases where it contains 
incorrect or inaccurate information about the final solution. 

Conclusions 

For improving the performance of the HFRIQ-learning (Heuristically Accelerated 
Fuzzy Rule-Interpolation based Q-learning), in this paper a gradient descent-based 
rule base optimization and a distance-based rule base reduction method is 
suggested. The proposed methods are capable of tuning (optimizing) the injected 
external expert knowledge base even if they are describing inaccurate information. 
Furthermore, the convergence speed of the HFRIQ-learning system can be 
improved, but only in cases where the expert heuristic is at least partially correct. 
Otherwise, when incorrect expert rules are injected, the system still converges, but 
more episodes (and thus more iterations) are needed for tuning (fixing) the rules of 
the rule-base. The HFRIQ-learning can also be valuable for optimizing models with 
a sparse fuzzy rule-base and FRI reasoning, such as ethologically inspired robot 
behavior models [19] or other FRIQ-learning benchmark applications [35] [41]. 

The further research will focus on developing an expert knowledge base validation 
method, which can be suitable for comparing the initial expert rules with the 
optimized expert rules obtained after the learning process, providing information 
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about the accuracy of the initial expert knowledge base. For formalized 
representation of the initial state-action expert fuzzy rule base, the Fuzzy Behavior 
Description Language (FBDL) [24] could be also applied to define the expert rules 
in a human-readable form. 
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