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Abstract: This paper considers the comparision of the Meyer and Morlet wavelet for 

bearing fault diagnosis. We created a wavelet based upon a transient vibration signal 

model established for signals generated in deep-groove ball bearings with pitting (spalling) 

formulation on their inner race. The wavelet creation used the sub-optimal algorithm 

devised by Chapa and Rao that matches a Meyer wavelet to a band limited signal in two 

steps. We tested the applicability of the matched wavelet for identifying this kind of bearing 

failure. The Morlet wavelet was used as a benchmark for evaluating the performance of the 

matched wavelet since many publications show its successful application. It was shown that 

for analysing exponentially or near-exponentially damped vibration responses like the 

vibration produced by spalling on the inner race of a deep-groove ball bearing, the Morlet 

wavelet is a reasonable choice and gives better results than the Meyer wavelet. 

Keywords: Wavelet analysis; bearing vibration analysis; wavelet matching; condition 

monitoring 

1 Introduction 

It is known that the Discrete Fourier Transform (DFT) is most suitable for testing 

finite-energy, periodic, time-discrete quantities. The reason why the DFT is still 

used effectively for the vibration analysis of bearings is that most of the complex 
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vibrations show periodicity in time. This periodicity is closely related to the 

geometry and rotational speed of the bearing. Thus, the vibration components can 

be determined with reasonable accuracy. 

Wavelet Analysis is a relatively new tool that has been successfully applied in 

many areas of science. In recent years, several researchers have proposed the use 

of wavelet transform to test bearing vibration signals where the FFT was 

ineffective [1-3]. Some scientists recommend the use of existing wavelet basis 

functions, while others create new wavelet bases. The proposed methods also 

differ in applied analysis techniques as well. These are Continuous Wavelet 

Transform (CWT), Discrete Wavelet Transform (DWT), Wavelet-packet analysis, 

Matching Pursuit, etc. 

Junsheng et al. [4] used an impulse response wavelet to analyse faults in a roller 

bearing with CWT. Their wavelet is simply an exponentially damped sinusoid. 

Jiang et al. [5] proposed a hybrid method that combines the Morlet wavelet filter 

and sparse code shrinkage. Kankar et al. [6] compared three machine learning 

techniques for bearing fault diagnosis. These methods were the support vector 

machine (SVM), the artificial neural network (ANN) and self-organizing maps 

(SOM). For feature extraction they used a Meyer and Morlet wavelet. They found 

that the Meyer wavelet performs better with SVM classifier. Sheen [7] effectively 

applied the Morlet wavelet in the envelope detection for the vibration signal and 

found it also useful in the defect diagnosis of bearing vibrations. The application 

of the complex Morlet wavelet with SVM classifier is suggested in [8] for fault 

diagnosis of ball bearings having localized defects on various bearing 

components. Liu et al. [9] suggested an automatic feature extraction algorithm for 

bearing fault diagnosis using a correlation filter-based matching pursuit. 

In wavelet analysis the choice of a wavelet is crucial from an analysis point of 

view. The analysing wavelet is usually independent of the signal investigated. 

Since the wavelet transformation and its derived energy distributions use 

convolution, one can obtain the highest output from these transformations when 

the signal and the wavelet are similar. 

Over the past decade many publications [10-13] have considered creation of a 

matching wavelet to a given signal. Tewfik et al. [10] worked out a design method 

that matches a wavelet to the time domain form of a signal. Chapa and Rao [11] 

developed an algorithm that searches for a matching wavelet in frequency domain. 

Their method is capable of designing Meyer wavelets that approximate the 

wavelet amplitude and phase spectra separately. The cost function is the minima 

of the Mean Squared Error (MSE), calculated from the amplitude spectra and 

group delay of the signal and the wavelet. 

Our aim was to decide whether the Meyer or the Morlet wavelet is the better 

choice for analysing bearing failure. 
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We used Chapa and Rao’s algorithm to create a matching wavelet to the signal 

model of transient vibration generated by an artificially created fault on the inner 

race of a deep groove ball bearing. To evaluate its performance, we used the 

vibration data of a pitted single row deep-groove ball bearing of type 6209. This 

bearing was earlier subjected to an endurance test. We calculated the scalogram of 

the vibration data using the newly created wavelet and the Morlet wavelet as well. 

Then we compared the results and found the better representation with Morlet 

wavelet. 

2 Methods 

2.1 Wavelets, Continuous Wavelet Transform and Scalogram 

Wavelets [14] are functions constructed by translating and dilating a basic 

function called a mother wavelet Ψ (see Eq. (1)). The parameters a and b are 

called scale (dilation) and translation parameters, respectively. The wavelet is a 

normalised   1  function. 
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For Ψ(t) to be a wavelet function and to recover f(t) from its CWT, Ψ(t) should 

satisfy some conditions. If Ψ(t) has a zero average, i.e.: 
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where CΨ is a constant that depends on the choice of wavelet, then there exists a 

Continuous Wavelet Transform (CWT) - Inverse Wavelet Transform (IWT) 

analysis-synthesis pair [15]. 

The CWT of a function f(t) is defined as 
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The benefit of CWT is that by changing the scale parameter, the duration and 

bandwidth of wavelet are both changed, providing better time or frequency 

resolution, but its shape still remains the same. The scale parameter can be linear 

or dyadic. The CWT uses short windows at high frequencies and long windows at 

low frequencies. 

The scalogram [14], defined as the squared magnitude of CWT (Eq. (5)), always 

has non-negative, real-valued time-frequency (scale) distribution. This 

transformation conserves energy. Its resolution in the time-frequency plane 

depends on the scale parameter. 
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Wavelets can be classified as orthogonal, bi-orthogonal, semi-orthogonal or non-

orthogonal wavelets. 

The Morlet wavelet is a non-orthogonal wavelet given as: 
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where 0 is the centre frequency. 

In the case of 50  , Eq. (6) is simplified to (7): 
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Orthogonal wavelets can be constructed from polynomial spline functions or by 

solving for the filter coefficients such that its Fourier transform, frequency 

response function, satisfies orthogonality and moment conditions [14]. Such 

wavelets are the Shannon, Meyer, Battle-Lemarie and Daubechies compactly 

supported wavelets. 

The Meyer wavelet is defined through the scaling function    as: 
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where    is a tapering function. 
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2.2 Matching Wavelet to a Given Signal 

Chapa and Rao worked out a method that is capable of designing Meyer wavelets 

to match band-limited signals. Their method directly matches a wavelet to the 

signal. The method requires some conditions on the wavelet spectrum amplitude 

and phase. They define the theorem of band-limited scaling function and the band-

limited wavelet as necessary and sufficient conditions for an Orthonormal 

Multiresolution Analysis (OMRA). They introduce a method by which a wavelet 

in OMRA is expressed in terms of scaling function. They also derive constraints 

on the structure of the wavelet phase. The matching algorithm is sub-optimal in 

the sense that it matches the wavelet amplitude and phase independently [11]. 

2.2.1 Matching Wavelet Amplitude 

The starting point of amplitude matching algorithm is the discrete form of the 

refinement equation by which a scaling function can be expressed from a wavelet: 
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They define the condition on the wavelet spectra  ̂
 

to guarantee 

orthonormality (Eq. (11)) and an error function (Eq. (10)) as: 
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where: 
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 a = scaling coefficient. 

It is shown in [11] that this wavelet construction is Meyer’s spectrum amplitude 

construction exactly. The algorithm searches for the extreme value of cost 

function in a discrete form. Using the symmetric property of the wavelet function, 

their design equation can be expressed in the form: 
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where: 
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1 = vector of all ones. 

Equation (11) can be rewritten in matrix form as 
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This amplitude matching algorithm is a constrained optimization problem that can 

be solved by Lagrange multipliers [11]. 

The error function (Eq. (10)) can be given by 
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Matching amplitudes are given in the form of 

  ,
11 1












W

a
W

a
Y TT

A1AAA

 (15)

 

where 

 
 

.
1

1

1AA1

AAA1





TT

TT W
a

 (16) 

2.2.2 Matching Wavelet Phase 

The phase matching algorithm is similar to the amplitude matching since it is 

based on MSE criteria, but instead of signal phase, it uses group delay. The group 

delay of a signal is defined as the first order, negative derivative of the phase 
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There are specific constraints on the structure of the wavelet phase (Eq. (20)), 

which is expressed in terms of the phase of the scaling function [11]: 
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where   is the phase of scaling function    and   is the phase of wavelet 

  . 

The wavelet phase is a symmetric, 2 periodic, even function. The method models 

one period of the negative of the group delay, denoted by  T  as a polynomial 

of order R [11]: 
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 cr = polynomial coefficients. 

By replicating one period of the group delay at every 2 interval, the group delay 

of the wavelet is modelled as the 2 periodic polynomial of order R [11]: 
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The discrete form of Eq. (19) can be written as (20), where 
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Using vector notation, the group delay is expressed as 

cB
, (21) 



L. Tóth et al. On Finding Better Wavelet Basis for Bearing Fault Detection 

 – 24 – 

where 
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Negatives of the group delays ψ and  can be expressed in terms of   . 

Applying  
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The matching process minimizes the weighted error (Eq. (25)) between the group 

delay of the wavelet   and the desired signal F  [11]. The approximation is 

performed only in the pass-band [11], thus a weighting function Ω (n) is 

calculated from the result of the amplitude matching process: 
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The optimal values of the polynomial coefficients can be obtained by solving 

.0c 
 (26) 

2.2.3 Matching a Wavelet to Signal Model of Bearing Vibration 

We used the above-mentioned algorithm to create a matching wavelet to the 

transient vibration generated by an inner race fault – a pitting or spalling 

formulation – in a deep groove ball bearing. It is shown in [16] that the rolling 

elements generate a series of amplitude modulated transient pulses when they pass 

over the fault. The amplitude modulation is caused by load distribution; that is, the 

closer the fault is located to the load zone, the higher the amplitude of the transient 

is. One of these impulses can be described as: 
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where fn is the n
th

 natural frequency of bearing system, C is a damping factor, A is 

the initial amplitude and n is an exponent influencing the rise time of the transient. 

In order to create a new wavelet basis function, we used 512 samples of time 

domain data of a transient vibration signal (Fig. 1) described by Eq. (27) with 

A=68.74, n=1.851, C=6.78, and ω0=18.85. 

 

Figure 1 

Transient signal model (A=68.74, n=1.851, C=6.78, ω0=18.85) 

We applied Chapa and Rao’s amplitude and phase matching algorithm [11] on the 

transient signal model of the bearing vibration. The results are shown in Fig. 2. 

The new wavelet amplitude spectra match the amplitude spectra of the transient 

very well in the passband. The MSE of the matching is 0.011. For phase matching 

we used a 16
th

-degree polynomial. The matched group delay shows satisfactory 

characteristics in the passband. These plots are very similar to the plots introduced 

in [11], since the applied transient pulses are similar in both cases. 

 

Figure 2 

Matching the wavelet amplitude and the group delay in the neighbourhood of the passband (matched 

wavelet amplitude spectra and group delay: continuous line; amplitude spectra and group delay of the 

transient: dashed line) 
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Combining the amplitude and phase spectra together, it is possible to obtain the 

time domain form of wavelet function [11]. It can be seen in Fig. 3 that the new 

wavelet adequately fits the original transient data. 

 

Figure 3 

Transient signal and the new wavelet in the time domain (transient signal: dotted line; wavelet: 

continuous line) 

Since the new wavelet basis cannot be given in closed form we gave the filter 

coefficients in Table 1. The time- and frequency behaviour of the wavelet and the 

impulse responses of filters are shown in Figs. 4 and 5. 

 

Figure 4 

The new wavelet and scaling function in the frequency and time-domain 
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Figure 5 

The impulse responses of filters corresponding to new wavelet 

From Table 1, one can conclude that these Quadrature Mirror Filters (QMF) have 

no compact support. Their effective support is approximately [-10, 10]. But by 

limiting the filter coefficients to this range, we cannot reconstruct the original data 

from the wavelet coefficients completely. The fewer coefficients we use, the more 

error we get during reconstruction. The opposite is also true; that is, more 

coefficients are needed to reconstruct the original data from the wavelet 

coefficients. Since this wavelet was created to match the vibration signal of a 

bearing with a specified fault, it can be used to detect this kind of defect in a 

bearing. 

Table 1 

The new wavelet Ψ(t) filter coefficients {h[k]} and {g[k]} 

k h(n) g(n) 

± 0 0.7948 -0.7948 

± 1 0.4260 0.4260 

± 2 -0.0760 0.0760 

± 3 -0.0872 -0.0872 

± 4 0.0474 -0.0474 

± 5 0.0115 0.0115 

± 6 -0.0166 0.0166 

± 7 0.0068 0.0068 

± 8 -0.0028 0.0028 

± 9 -0.0024 -0.0024 

± 10 0.0069 -0.0069 

± 11 -0.0045 -0.0045 

± 12 -0.0012 0.0012 
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3 Application of Matched and Morlet Wavelet for 

Detection of Spalling in a Bearing 

We examined the applicability of the matched and the Morlet wavelet for 

detecting pitting formulation on the inner race of a deep-groove ball bearing. Our 

aim was to detect transient pulses generated in the bearing to indicate the presence 

of a pitted raceway, i.e. the time of the last possible maintenance before 

catastrophic failure. 

 

Figure 6 

A single row deep-groove ball-bearing of type 6209 used as test specimen 

 

Figure 7 

Pitting formulated on the inner raceway during endurance test 

We used two 6209-type, single-row, deep-groove, radial ball bearings as test 

specimens (Fig. 6). One of them was earlier subjected to an endurance test. As a 

consequence of the repetitive load on the bearing elements, pitting formed on the 

inner ring of the bearing (Fig. 7). The other bearing was free of faults. 
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For the test rig we used a turning machine of E1N type. The inspected bearing was 

mounted on a shaft which was fixed in the chuck. We used a rod fixed in the tool 

post as the support. The rotating nature of the tool post made it possible to apply 

radial load on the outer ring of bearing, where the force was set to be 

perpendicular to the rotating shaft. Our primary goal was to minimize the 

force/vibration transmission path, since noise can come from a number of 

different sources. Mechanical noises can be eliminated by properly set up 

measurement device configuration, while electrical noises usually come from the 

test rig. A portion of the outer ring of bearing was machined by grinding. An 

accelerometer of KISTLER 8702B50 type was attached to its flat area by 

beeswax. 

 

Figure 8 

The measurement setup 

For data acquisition (Fig. 8) we used the following devices: 

 HAMEG, HM507 analog-digital oscilloscope, 100 Ms/s real-time 

sampling rate, 

 KISTLER accelerometer 8702B50, 

 KISTLER 5108 charge amplifier, 

 PCI 6063E PCMCIA DAQ card, 500 ks/s sampling rate. 

The DAQ card was controlled by software developed under the NI 

LabWindows/CVI programming environment. Validation of our software was 

performed using a HITACHI VG-4429 function generator and digital 

oscilloscope. 

Sampling was performed at a constant inner ring speed of 1812 min
-1

. This value 

satisfies the specifications of American ANSI [17] and German DIN [18] 

standards (1800 min
-1

 ±2%) concerning bearing vibration measurements. The 

outer ring was stationary, as it delivered radial load. The sampling frequency was 

set to be 20 kHz since the accelerometer’s frequency range ends at 10 kHz. The 

gain was set to unity. 
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The time series data of sampled bearing vibration signal is shown in Fig. 9 and 

Fig. 10. 

 

Figure 9 

Vibration data of the good bearing, fsampling=20 kHz 

 

Figure 10 

Vibration data of the pitted bearing, fsampling=20 kHz 

The vibration data are the results of two distinct measurements, where we could 

not provide exactly the same load on the bearings. Therefore one cannot make a 

final decision comparing the numerical values of vibration amplitudes. These 

figures qualitatively indicate the vibration signals. However, the difference is 

obviously shown. One can notice the repetitive transient pulses with an average 

periodicity of 30 ms. This variation in repetition time is the result of the motion of 

the bearing elements, which are rolling and sliding. 
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Figure 11 

Time-frequency distribution of signal energy of good (left) and pitted bearing (right) using the matched 

wavelet 

The scalogram of the good bearing clearly shows the time-frequency location of 

transients. These pulses do not appear at each rotation. They seem to be random 

signals that might come from the test rig. In contrast, periodically repeating 

transient pulses are clearly seen on the scalogram of the pitted bearing. Their time-

period and frequency can be numerically given. The application of this method 

reduces the incorrect evaluation of vibration data and can be a valuable 

supplement to conventional condition monitoring methods. 

We calculated the scalogram of the same vibration data using the Morlet wavelet 

as well (Fig. 12). The choice of this wavelet is obvious, since many authors report 

its successful application to bearing vibration analysis [5, 7, 8, 15, 19-21]. 

 

Figure 12 

Time-frequency distribution of signal energy of the pitted bearing using the Morlet wavelet 

Comparing the two time-frequency representations that were calculated using the 

matched wavelet (Fig. 11) and the Morlet wavelet (Fig. 12), we notice that the 

Morlet wavelet provided a more realistic result. The Morlet wavelet gave better 

energy concentration. The scalogram calculated by the matching wavelet provided 

better time localization, but its frequency localization is less accurate than that of 

the Morlet wavelet. This raises the question of the cause of better representation 

using the Morlet wavelet, since the matched wavelet was designed using the signal 

model of this type of failure in bearings. 
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4 Examination of the Wavelets and the Signal Model 

The time and frequency domain plots of the matched and the Morlet wavelet are 

shown in Figs. 13 and 14. The wavelet amplitudes were normalized to facilitate 

comparison. 

 

Figure 13 

Time plot of the matched and the Morlet wavelet 

The matched and the Morlet wavelet follow almost the same pattern between the 

[-1.5, 1.5] time interval, where the matched wavelet approximates the Morlet 

wavelet. Most of the signal energy is concentrated in this area. 

 

Figure 14 

Amplitude spectrum of the matched and Morlet wavelet 

The frequency domain form of these wavelets shows their bandpass behaviour. 

The bandwidth of the Morlet wavelet is narrower than that of the matched; that is, 

the Morlet wavelet concentrates more of the signal energy around the centre 

frequency. The wider bandwidth gives shorter time extent; thus the time 

localization ability of the matched wavelet is better. This is also clearly seen in 

Fig. 11. and Fig. 12. 

Comparing the real part of the complex Morlet wavelet in Eq. (7) to the signal 

model of transient vibration produced by a pitting formulation on the inner race of 
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a deep groove ball bearing (Eq. (27)), one can notice the similarity. These 

waveforms are shown in Figs. 15 and 16. The resemblance is clearly seen. 

The frequency domain form of these waveforms shows their bandpass behaviour 

(Fig. 16). The phase characteristics of these waveforms are also similar except for 

the dilation caused by unwrapping their phase. 

Several papers report the successful application of the Morlet wavelet in the field 

of bearing vibration analysis without clarifying the reason for their choice. Since 

the signal model of transient pulses generated by pitting on the inner raceway of a 

deep-groove ball bearing was very similar to the Morlet wavelet, and since the 

wavelet transform and its derived energy distributions give more output when the 

signal and the analysing wavelet are similar, we can conclude that for analysing 

exponentially or near-exponentially damped vibration responses like the bearing 

vibration signal caused by pitting formulation on the inner raceway of a deep-

groove ball bearing, the Morlet wavelet is a reasonable choice that is sure to yield 

good results. 

 

Figure 15 

Signal model of bearing vibration (Eq. (30)) and the Morlet wavelet in the time domain 

 

Figure 16 

Amplitude and phase spectrum of the signal model and Morlet wavelet 
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Conclusions 

This paper showed the creation of a new wavelet that matches the transient 

vibration response generated by pitting on the inner race of a deep-groove ball 

bearing. Wavelet creation is based on Chapa and Rao’s method, where the Meyer 

wavelet amplitude and phase spectra are matched independently to the signal. It 

was shown that the new wavelet can be used for detecting transient pulses 

generated in a bearing. We compared the results with those calculated using the 

Morlet wavelet since many application reported its successful application. We 

found the Morlet wavelet superior to this matched wavelet in representing 

transient signals of bearing vibration where pitting is formulated in the inner 

raceway of a deep groove ball bearing. It was shown that the signal model of this 

kind of bearing failure is very similar to the Morlet wavelet; thus its scalogram 

gives a more accurate time-frequency representation than the Meyer wavelet. 
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