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Abstract: One of the trends of the current generation of machine speech, is articulatory 

speech synthesis, that is based on the processing of visual and geometric information, 

related to voice production. Accurate knowledge of the static and dynamic geometric 

parameters of the vocal organs, plays a fundamental role in the realization of speech 

synthesis. Appropriate sources of visual extraction of these data can be MRI and 

ultrasound (US) records made during speech, which can be described by different 

geometries. Harmonization of the geometries of MRI and US frames is not a trivial task.   

In this publication, we present one possible method for the transformation between the two 

sources. The starting point of the transformation process is formed by tongue contours 

obtained by automatic algorithms. Beyond this exact method, we also follow statistical 

procedures, by applying machine learning to interconnect MRI and US records. 

Keywords: articulatory speech synthesis; tongue contour tracking; machine learning; 

dynamic MRI and US records; harmonization of MRI and US sources 

1 Introduction 

Speech synthesis is one of the most dynamically developing fields in speech 

research, with ever more complex technical and methodological challenges, which 

even today, forms an integral part of the human-machine relationship. In this 

regard, the communication role of the machine is crucial, since its basic 

designation is the implementation of text-to-speech transformation, i.e. the 

realistic imitation of the acoustic product forming during natural human speech.  

In the extended version of this, the model can be further refined by taking into 

account the supra-segmental elements of speech (rhythm of speech, voice level, 
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pitch, tone, intonation, stress), which can have high importance in the domain of 

speech recognition, as well [1]. Currently, research is ongoing, in the field of 

speech synthesis, with focus on the creation and improvement of text-to-speech 

systems, that allow the spread of such applications as, e.g. passenger information 

systems, speaking smart devices, belletristic readers, screen readers, sound 

weather forecast or telephonic directory enquiry services. In the case of text-to-

speech readers representing the traditional trend of researches, speech construction 

occurs by direct or indirect utilization of human voice samples. The success of 

these endeavors is proven by numerous publications of the literature [2-7] which 

report on speech synthesis based on different speech databases or corpuses, in the 

case of Hungarian, German, or multilingual synthesizers. In addition to the 

classical concepts, there are also such fields starting to evolve, which are less 

elaborate and many open problems are still expected to be solved. For instance, 

articulatory [8-9] or machine-learning-based speech synthesis [10-11] can be 

classified here. 

Articulatory speech synthesis, instead of the application of human voice samples, 

tries to implement the imitation of the acoustic product by machine imaging of 

human voice production and articulation. One of the modern technological 

streams of this is the experimentation trending to the articulatory 

electromechanical speech generators needed for the production of speech of robots 

[12] [13]. The starting point of synthesis is the execution of articulatory-acoustic 

conversion that is built upon visual information relating to speech [14]. 

Consequently, different imaging procedures (e.g. Magnetic Resonance Imaging 

(MRI), Computer Tomography (CT), Ultrasound (US)) have essential roles, which 

supply new information channels in the process of scientific research. 

Accordingly, MRI or US records made during speech can be potential sources of 

visually supported extraction of the parameters describing human articulation. 

Since most actively the tongue takes part in voice production, it is expedient to 

monitor primarily the motion of the tongue as accurately as possible. In recent 

years, besides the mentioned MRI, CT, and US, popular tools of the investigations 

are electropalatography (EPG) or electromagnetic articulography (EMA). 

Applying the simpler accessible US, EPG, and EMA procedures, information 

about the dynamic features of speech can be obtained mostly along certain plane 

sections, although three-dimensional US technique is available, as well, which 

provides information in multiple planes [15]. Nevertheless, by dint of MRI and 

CT equipment demanding clinical conditions, three-dimensional morphological 

data can be acquired. Recently, several studies have dealt with elaboration and 

development of dynamic tongue contour tracking algorithms [16-18], which can 

form one of the keystones of research performed in the topic of articulatory speech 

synthesis. Dynamic scanning of the tongue contour is worth doing in the sagittal 

plane, where the up-down and forward-backwards motion of the tongue is visible 

in a two-dimensional section. The most convenient tools of the investigations can 

be US and MRI records, the advantage being the good spatial and temporal 

resolution, the ability for synchronization of the image and sound materials, and 
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the protection of the speaker from harmful exposure. Designation of the tongue 

contour can be done manually or by automatic algorithms, though hundreds or 

even thousands of frames, creating a given record to justify the preference of 

dynamic programming against manual operations. The precision of tongue contour 

fitting is largely determined by the quality of the record and the type of contour 

tracking algorithm, thus, the ambition for refinement of image processing and 

tongue contour tracking is still a key task for research. 

Beyond this, the application of machine learning algorithms designates an 

important direction, during which the machine produces output results from the set 

of certain input parameters, based on information gained from the environment, 

while it learns and improves performance. Machine learning algorithms try to 

imitate the behavior of the human brain, so the knowledge and realistic modelling 

of the operation of neural networks plays a key role. Biological neural networks 

realize a learning process based on different patterns, which can be mapped by 

creating appropriate algorithms, in the case of machine learning. In the field of 

speech synthesis, the set of input parameters of the machine can be formed by, for 

example, human voice samples or data retrieved from visual sources, which 

performs the training and the auditory product can be vocalized. Thus, the 

possibility of neural networks, trained by visual information, offers the linking of 

methods of articulatory speech synthesis and machine learning in a natural way. 

Opportunities are actually unlimited, and the procedures and their combinations 

are mostly, as of yet, not revealed fully. 

Our work herein examines the transformational relationships between the 

geometries of US and MRI frames and the simultaneous application of tongue 

contour tracking and machine learning algorithms. 

2 US and MRI Frames 

2.1 Starting Points 

Our current research focuses on the simultaneous analysis of US and MRI records 

made during speech, that can facilitate the visually supported complex retrieval of 

the static and dynamic parameters that describe human articulation. The MRI 

records were selected from the free-access multimedia package, on the website of 

the University of Southern California, the US records were available in the form 

of audiovisual materials created by the Micro system of the Lingual Articulation 

Research Group of the Hungarian Academy of Sciences and Eötvös Loránd 

University [19]. The dynamic moving images can be decomposed into static 

frames, as a result of that, the subsequent moments of speech generation can be 

studied step by step. Figure 1 presents a US and an MRI frame which visualize 
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tongue positions corresponding to sound k arising from a female and a male 

speaker. 

Figure 1 

The side-view position of the tongue in a US (a) and an MRI (b) frame described by radial (a) and 

Cartesian coordinates (b) 

The records display the region of the oral cavity in the sagittal plane dividing the 

human body into left- and right-hand parts, so in a two-dimensional section, the 

up-down and back-forth motions of the tongue become seeable. In the US record, 

the tongue contour appears as a bright band that is produced by the US waves 

reflected at the boundary of the tongue and the air above and the line of the edge 

of the tongue can be traced at the lower border of the bright band. Since the hyoid 

bone and the mandible partially shield the US waves, the US transducer is not 

capable of probing the region of the oral cavity entirely. This deficiency shows up 

in the form of a dark band emerging on the left and right sides of the image, at the 

front and rear parts of the tongue that hides the movement of the tongue root and 

the tongue tip, thus, in contrast to MRI records displaying the total region of the 

oral cavity, only partial information can be obtained about the shape and 

movement of the tongue. The fact can be noted as a further difference that the 

contour of the palate cannot be identified in the US frames, while in the MRI 

frames, the contour of the hard palate can be determined with sufficient accuracy, 

and also, the movement of the soft palate can be detected. In Figure 1, it can be 

observed that the US frames are spread in a zone covered by a sector of a circle, so 

the two-dimensional polar coordinates can be conveniently applied by the 

description of the position, of each pixel. These coordinates can be defined by 

radius r measured from center a of the circle and angle φ relative to the vertical 

symmetry axis of the image. Thereby, the location of a pixel, taken in the plane of 

the frame, is determined by the pair of coordinates (r,φ) unambiguously. In the 

case of the used US frames, the value of angle φ can change between -45° and 

45°. However, the most comfortable frame of reference needed for the treatment 
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of MRI frames can be given by a two-dimensional Cartesian coordinate system, in 

which, the position of the designated point of the frame is fixed by the pair of 

coordinates (x, y). One of the aims of research is to harmonize the radial and 

rectangular arrangements of US and MRI records, by finding the appropriate 

geometric transformations. 

Geometric transformations can be realized through the conversion of the relevant 

anatomic contours of US and MRI records. These curves can be obviously given 

by the tongue and palate contours, since in the dynamic description of articulation, 

the change of relative positions of the surface of the tongue and the palate plays an 

essential role in the region of the oral cavity. Hence, these examinations provide 

the most accurate data concerning tongue and palate contour required. 

For determination of the contour of the edge of the tongue we developed and 

improved automatic tongue contour tracking algorithms, based on dynamic 

programming. The primary aim of tongue contour tracking, is the dynamic 

description of tongue positions, belonging to different speech sounds, and the 

investigation of tongue movements characterizing sound transitions created during 

co-articulation. Besides the qualitative analysis, the tongue contour can also be a 

good starting point for the quantitative study of speech, since the numeric values 

derived from tongue contour, can support the deeper understanding and 

development of articulatory models. Algorithms elaborated for detection of the 

tongue contour can be extremely diverse depending on the applied procedures. 

The edge of the tongue is drawn as a bright band in US records, while in MRI 

records it can be experienced as a contrast coming into existence between the dark 

domain of the air in the oral cavity and the bright domain of the tongue tissue, so 

contour tracking means the search for the pixels at the boundary of the dark and 

bright domains, determining the line of the edge of the tongue, in both cases. 

Using our approach, the application of our algorithm is preceded by the 

preprocessing of records, that tends to cancel the noise and discontinuities, 

resulting from imaging techniques. The most effective instruments of reducing the 

mentioned errors are edge-enhancement and averaging operations, that 

mathematically can be realized by convolution [20]. The found pixels of maximal 

brightness, adjusting to the uneven line of the edge of the tongue, produce a rough 

curve, the smoothing of that can be solved by a discrete cosine transformation. 

The images of Figure 2 show automatically fitted tongue contours in an MRI (a) 

and (b) and US (c) and (d) frames, respectively. In Figure 2a, the tongue position 

belonging to sound o can be observed, while Figure 2c renders the tongue position 

corresponding to sound ɔ by highlighting the smoothed tongue contour. In Figures 

2b and 2d, the magnified details of the unsmoothed tongue contours drawn in 

frames 2a and 2c, can be seen. 

Figures 2b and 2d can be created by a special transformation starting from Figures 

2a and 2c. 
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Figure 2 

Automatically fitted tongue contours in MRI (a, b) and US (c, d) frames, showing also the magnified 

details of the unsmoothed tongue contours (b, d) 

The substance of the transformation procedure is illustrated by dint of the US 

frame seen in Figure 3. As a first step, in Figure 3a of radial geometry, originating 

from the center of the circle, radial sections are formed in the range -45° and +45° 

defined by the record. Along these sections, the image is practically resampled. 

The sections produced in this manner are arranged in columns, resulting in such an 

image matrix, that most conveniently can be described in the Cartesian x-y plane. 

Figure 3b is generated on the track of shaping the matrix structure. Investigations 

show that sampling performed by 1/4° is the ideal, since this time, a change in the 

contour, greater than two pixels, does not occur between adjacent columns of the 

matrix. For the sake of clarity, the sections are depicted only by 5° that are 

demonstrated by the white lines in Figure 3. The procedure works in the case of 

MRI frames in a similar way, by applying the center and angular domain (usually 

wider than the range -45° – 45°) designated in the MRI frame properly. 
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Figure 3 

Some radial sections (drawn by white lines) of US frames in the original (a) and in the matrix-

structured transformed plane (b) 

The speaker for the MRI records is a native American English male speaker (John 

Esling), who vocalizes series of sounds of type VCV with vowel V and consonant 

C. In the US records, series of sounds arising from native Hungarian and Chinese 

female speakers are recorded, which are of CVCV, CVC, and VCV structures. All 

of these speakers are young adults, and the Chinese participant speaks in a 

Shaanxi Xi'an dialect. According to the presented frames of Figure 2, the obtained 

curves follow the line of the edge of the tongue authentically. 

2.2 Geometric Transformations 

Due to the screening effect of the hyoid bone and the mandible, US images are 

able to visualize the movement of the tongue only partially, that leads to a more 

confined data set regarding the position of the tongue compared to MRI frames. 

Since the production of a more extended parameter set from a narrower one, is 

much more challenging than the reverse, we specified the contours of US records, 

as the base of transformations. 

As mentioned above, in addition to the tongue contour, the curve fitted to the 

palate plays a key role in the examination of articulation. Hence, before 

implementation of the transformation, the palate contour is needed to be 

ascertained in US frames. It is not a trivial task, because it cannot be revealed 

immediately in the US records. The location of palate, however, can be given via 

estimation by presuming the boundary of the tongue and palate by selecting the 

points being in the highest positions, and touched by the surface of the tongue 

during articulation. This requires, of course, the investigation of such consonants 

during the utterance of that the tongue surely touches the hard or soft palate. This 

condition is fulfilled automatically in the case of the available US package 

containing various audio items, since, during the articulation of consonants being 
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present in the recorded sentences, the tongue comes into contact with the palate at 

different places. We implemented the drawing of the contour of the palate 

essentially by the solution of an extremum search problem, the result of that is 

presented by the red curve of Figure 4, and the tongue contour belonging to the 

frame is demonstrated by the green curve. 

Figure 4 
Tongue contour (green) fitted to the surface of the tongue and palate contour (red) arising from an 

extremum search problem in the case of US frames 

For the transformation of the curves of Figure 4, we searched for such a reference 

point that can be identified with convincing certainty in the US and MRI frames, 

as well. We defined this point at the peak of the epiglottis, the position of that is 

marked by the red circle drawn in the images of Figure 5. 

 

 

 

 

 

 

Figure 5 

The peak of the epiglottis localized by red circles in the US (a.) and MRI (b.) frames 

In the course of the visual study of dynamic US records we concluded that, during 

articulation of certain sounds, the tongue is pulled back insomuch that it touches 

the epiglottis. Hence, we designated the peak of the epiglottis as the starting point 

of the palate contour, and we determined the angular range covered by the tongue 

contour belonging to the selected sound k, which is limited by the values -39.6° 

and 19.4°. We performed the transformation of the curves of the tongue and palate 
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contour in the polar coordinate system by scaling the radial and angular range 

given by the pairs of values (r, φ) describing the points of the curves, and by 

shifting the initial angle φ0 of the angular range according to the formulas 

r’ = Rr 

φ’ = FI φ 

φ0’ = φ0 + FIKORR (1) 

The scale factors R and FI of relationships (1) enable the normalization of the 

radial and angular range, and the term FIKORR is responsible for the rotation of 

the angular range. By fixing the values R=0.31, FI=1, FIKORR=12.6°, it is 

allowed to transplant the tongue and palate contours to the MRI frame. According 

to Figure 6, the tongue and palate contour fit to the MRI frame in an acceptable 

way, where the angular range of the tongue contour extends between the values -

27° and 32°. Ultimately, the radial geometry of US frames is embedded into the 

rectangular geometry of MRI frames by the transformations (1) executed in the 

system of polar coordinates. 

Figure 6 

The angular range of the fitted (a) and transformed (b) US tongue contours drawn in the US (a) and 

MRI (b) frames, where the US palate contour is presented by red curves 

By means of the transformation, the biunique correspondence of the points of 

tongue contours fitted to the US and MRI frames becomes possible that can be 

traced by dint of Figure 7. Due to the factor FI=1, the transformation is isogonal, 

therefore, the four contour points specified by the four inner radial sections 

selected in the US frame can be mapped along the same four radial sections drawn 

in the MRI frame to the MRI tongue contour illustrated by the blue curve. Thus, 

passing along a given section, two points can be found on the green and blue 

curves that can be assigned in pairs unambiguously. 
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Figure 7 
The biunique correspondence of the points of the transformed US tongue contour (green) and the fitted 

MRI tongue contour (blue) along the designated radial sections drawn by white lines in the US (a) and 

MRI (b) frames 

The transformation can be realized in the reverse direction, as well, which means 

that a contour of an MRI frame can be projected to a US frame. For this purpose, 

the inverse transformations of (1) should be applied in the form of 

r = r’/R 

φ = φ’/FI 

φ = φ0’ – FIKORR (2) 

Using the transformations of (2), the tongue and palate contour of an MRI frame 

can be transferred to the appropriate US frame, as it is exemplified by Figure 8, 

where the tongue contour of Figure 7b is projected. The transformed curves 

accurately demonstrate those sections of the tongue and hard palate which do not 

appear in the US record because of the screening effect of the mandible. 

 

Figure 8 
The fitted (b.) and transformed (a.) MRI tongue contours drawn in the MRI (b.) and US (a.) frames, 

where the MRI palate contour is presented by red curves 
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It is important to emphasize that the transformation of (1) and (2) containing exact 

steps cannot be applied uniformly in the case of all speech sounds, since the 

parameter set describing the transformation can change sound by sound. This 

circumstance makes the compact combination of US and MRI records more 

difficult, but this problem can be resolved by the optimization of the parameters of 

the transformation, extending to several speech sounds, or by involving machine 

learning algorithms belonging to the forefront of statistical methods. In the next 

chapter, the application possibilities of machine learning are presented. 

3 Machine Learning 

We created our programs in the MATLAB environment, and we implemented 

machine learning by such an algorithm that determines the weight factors of the 

neural network, by the scaled conjugate gradient method [21]. Knowing the input 

parameters, this optimization procedure solves the system of equations assigned to 

the problem by an iterative method, while the output parameters calculated by the 

procedure converge to the prescribed values. The advantage of the method is the 

fast convergence that can be ensured by minimizing the number of steps of the 

iterative algorithm, thus, machine learning training can be carried out in a 

relatively short time. The iterative steps are realized along such a direction that 

enables faster convergence than the most negative gradient corresponding to the 

steepest descent, while it preserves the error minimization obtained in the previous 

steps. Training stops when the maximum number of epochs is reached, or the 

maximum amount of time is exceeded, or performance is minimized to the goal, 

or the performance gradient falls below the minimum performance gradient, or 

validation performance has increased more than maximum validation failures 

times since the last time it decreased. 

We placed two hidden layers in the neural network, which individually contained 

30 neurons. We designated the input parameters needed for learning by dint of 

four chosen points of the dynamically changing tongue contour, to that we 

assigned the discrete cosine transform of the tongue contour in the output side of 

the system. The four feature points coincide with those four points that are 

determined by the four inner radial sections of the angular range, as shown in 

Figure 7b. As illustrated by Figure 9, the feature points of the US and MRI tongue 

contours are stamped by magenta and yellow markers, respectively, together with 

the ordinal numbers of the given points along the green and blue curves. In this 

manner, the feature points of the US and MRI tongue contours correspond to each 

other pairwise, unambiguously, along a given radial section. It can be seen that the 

magenta markers follow each other in reverse order compared to the yellow 

markers. This effect is caused by the vertical reflection of the US tongue contour 

when embedding it into the MRI frame. The relative positions of the four feature 

points are identical in each frame, in the sense that the four points can be found at 
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about 20%, 40%, 60%, 80% of the angular range [-27°, 32°], in the case of all 

tongue contours. So the feature points are fixed automatically in all frames. 

Figure 9 

The feature points of the US (green) and MRI (blue) tongue contours stamped by magenta and 

yellow markers along the selected radial sections indicated by white lines 

We executed the learning, first by fixing the input and output parameters arising 

from the MRI source, and then we tested the results in the same MRI frames. 

Based on a similar principle, we repeated the procedure for the US frames. 

Finally, combining the input parameters gained from the US source with the 

output parameters originating from the MRI source, we ran the algorithm again, 

then we tested the results in the MRI frames. The following sub-sections discuss 

the three different approaches. 

3.1 MRI-MRI Learning 

The subsection summarizes the results of machine learning accomplished in the 

case of the MRI records. The base of learning is formed by the phonemic 

configurations belonging to the speech sounds ɔ, aː, ͡ʦ, ͡ʧ, d, ʣ͡, ͡ʤ, ɛ, eː, ɡ, ɟ, i, j, k, 

l, n, ɲ, o, ø, r, ʃ, s, t, c, u, y, z, ʒ. The input parameters are given by the y 

coordinates of the four selected points of the tongue contour, measured in the 

plane of the image, while the set of output parameters is determined by the first 

twenty coefficients of the discrete cosine transform of the tongue contour. After 

running the learning algorithm, the trained tongue contour can be reconstructed by 

inverse discrete cosine transform. It practically means that the production of the 

complete curve occurs by using just four points. Our results are demonstrated 

through the example of sounds j and t. 



Acta Polytechnica Hungarica Vol. 18, No. 4, 2021 

 – 155 – 

Figures 10a and 10c present tongue contours fitted to the tongue positions 

corresponding to sounds j and t. Figures 10b and 10d display trained tongue 

contours belonging to the same sounds j and t. When comparing the fitted and 

trained tongue contours, no significant visual distinction shows up, the difference 

is minimal between the two curves, which can be determined also quantitatively 

for example by the values of the Mean Absolute Difference (MAD), Root Mean 

Squared Distance (RMSD), Mean Sum of Distances (MSD), or Nearest Neighbor 

Distance (NND). 

 

 

 

 

 

 

 

 

 

 

Figure 10 

Fitted (a, c) and trained (b, d) MRI tongue contours in the case of sounds j (a, b) and t (c, d) 

The results illustrated in Figure 10 reflect that the learning algorithm works 

effectively, confirmed by as well by the graphs of Figure 11 and showing the 

mean squared error of training, testing and validation. It can be seen that, besides 

rapid decrease, the errors of learning and testing are essentially identical. 

 

 

 

 

 

 

 

 

Figure 11 

The mean squared error of training, testing, and validation in the case of MRI-MRI learning 
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3.2 US-US Learning 

The subsection summarizes the results of machine learning performed in the case 

of the US records. In this case, learning is built upon utterances of CVCV type. 

The interpretation of the input and output parameters is the same as in the previous 

subsection, and at this time, the steps are led through the example of sounds g and 

ʃ. 

Figures 12a and 12c demonstrate tongue contours fitted to the tongue positions 

corresponding to sounds g and ʃ. Figures 12b and 12d depict trained tongue 

contours belonging to the same sounds g and ʃ. Comparing the fitted and trained 

tongue contours, no considerable distinction can be observed between the two 

curves. 

 

Figure 12 
Fitted (a, c) and trained (b, d) US tongue contours in the case of sounds g (a, b) and ʃ (c, d) 

Figure 13 illustrates the formation of the mean squared error of training, testing, 

and validation, the tendency of that is similar to the curves obtained during 

learning implemented by the MRI records. 
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Figure 13 
The mean squared error of training, testing, and validation in the case of US-US learning 

3.3 US-MRI Learning 

In the previous two subsections, the input and output parameters of machine 

learning originated from the same source, since MRI tongue contour was trained 

by MRI data, and US tongue contour was trained by US data. It is also worth 

examining how successful the parameters of the two different sources can be 

connected. It is quite challenging because the tongue contours of a female and 

male speaker of different anatomies need to be harmonized. Based on our 

expectations, however, even the parameters of the transformation carry 

quantitative information about the differences of the anatomies of the two 

speakers. For this purpose, we constructed the neural network such a way that its 

input parameters are created by the four selected points of the US tongue contour, 

and its output parameters are generated by the discrete cosine transform of the 

MRI tongue contour. Thereby, such a learning mechanism can be established in 

which MRI tongue contour can be produced by the utilization of US data. We note 

that the size of the used database lags behind the cases discussed in the previous 

two subsections by orders of magnitude. The reason for this is that the MRI and 

US records hold, not the same utterances, in all cases, furthermore, the number of 

frames assigned to the individual speech sounds does not match and that makes 

the harmonization of the parameters for the learning algorithm more difficult. 

Synchronization of the utterances and number of samples, however, is also 

currently in progress. 

Figure 14a exemplifies the tongue contour fitted to the tongue position 

corresponding to sound k. Figure 14b presents the trained tongue contour 

belonging to the same sound k. The result can be interesting even from several 

viewpoints, since beyond the fact that the input and output parameters connected 
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by the neural network arise from records of utterers of various native language and 

different gender made by different imaging techniques, neither the condition can 

be neglected that learning produces a wider data set starting from a narrower one. 

Namely, as mentioned earlier, US records are not able to display the rear part of 

the tongue and the region of the tongue tip that is visible in MRI records without 

any obstacles. This predicts that, using the partial data originating from US 

records and involving learning algorithms, the contour of the complete edge of the 

tongue can be estimated effectively. 
 

Figure 14 
Fitted (a) and trained (b) MRI tongue contours in the case of sound k 

Conclusions 

The main goal of this work was the development and refinement of methods that 

can be applied towards articulatory speech synthesis. The tools of investigation are 

constituted by dynamic MRI and US records. The examinations basically run 

along two threads that approach the problem of harmonization of the relevant 

anatomic contours of MRI and US frames from different viewpoints. At the 

starting level, geometric transformations are performed, which interconnect the 

tongue and palate contours of the MRI and US frames in a bi-unique way. 

Although this procedure is based on exact mathematical considerations – 

according to the present stage of research work – it cannot be applied for all 

speech sounds, in a uniform manner, because the parameter set of the 

transformation does not contain the same values for each speech sound. So this 

solution seems to be quite tedious. In pursuance of our future plans, it will be 

resolved by the optimization of the parameters of the transformation, to produce 

satisfactory matching of MRI and US contours. Therefore, by way of statistical 

methods, machine learning is involved in the study, the application is associated 

with our automatic tongue contour tracking algorithms. Machine learning is 

implemented in respect of MRI-MRI, US-US, and US-MRI sources by the 

appropriate combining of the input and output parameters of the neural network. 

Currently, only a limited number of training and testing configurations are 

available, but the source data are being gradually expanded. The actual results 
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exhibit only a narrow slice of the ongoing research work, since the fields of 

articulatory speech synthesis and machine learning, raise, in themselves, a large 

number of problems, that can be regarded as temporarily partially solved. 

Accordingly, the future trends of research can be determined by the perfection of 

the models of speech synthesis created by statistical or rule-based algorithms and 

built on visual information. It has a potential fundamental importance, for 

example, in speech therapy for clinical purposes, in the shaping of non-native 

language learning trainings or in the construction and development of the 

synthesizers needed for vocalizing silent speech. 
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