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Abstract: The main subject of the study, which is summarized in this article, was to 

compare three different models of neural networks (Linear Neural Unit (LNU), Quadratic 

Neural Unit (QNU) and Multi-Layer Perceptron Network (MLP)) to identify of the real 

system of the manipulator arm. The arm is powered by FESTO fluidic muscles, which 

allows for two degrees of freedom. The data obtained by the measurements were processed 

in Python. This program served as a tool for compiling individual dynamic models, 

predicting measured data, and then graphically interpreting the resulting models. 

Levenberg-Marquardt (LM) was used as the learning algorithm because it is more suitable 

for learning neural networks than for example, the Gauss-Newton method. 
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1 Introduction 

Automation is currently a highly watched process. By implementing automation 

into the production process, it is possible to increase work productivity and 

quality, reduce production costs, or protect employees from working in a 

hazardous environment [1], [2]. One of the manufacturing activities that can be 

automated is manipulation. Manipulators can be actuated using various kinds of 

actuators from electric to hydraulic or pneumatic – in addition to common 

pneumatic cylinders also pneumatic artificial muscles can be used. The 

development of the use of pneumatic artificial muscles as one of the atypical 

forms of propulsion is advancing, where the priority is to achieve the best 

precision in manipulation. As a result, the system needs to be correctly identified 

and controlled. [3], [4] 
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Researchers for many years have been devoted to the development and research of 

artificial muscles. The static and dynamic properties of the artificial muscle have 

already been described in several articles, e.g. [1], [5], [6], [7]. By recognizing the 

characteristics of artificial muscles, it is possible to improve their modeling, which 

can be realized e.g. using different types of neural networks. This was the case in 

[8], where a hybrid neuron was used to model PUS. The study of dynamics of 

systems with certain kinematic configuration driven by PAMs can be found in [9], 

[10]. In both articles, the authors developed and validated the dynamic model of 

braided pneumatic muscles (also known as McKibben artificial muscle). The 

effort of all authors of articles is to shift the boundary of knowledge in the field of 

artificial muscle modeling and subsequent control. 

The main objective is to compare the performance of several approaches to 

experimental identification of the system using neural network. The system is 

viewed as a SISO system, where the input variable’s pressure difference between 

the muscles and the output variable is joint angle. In addition to MLP model, 

which is a standard NN model, we used also LNU and QNU models in which the 

performances were not previously tested for PAM-based system identification. 

It is precisely the issue of “correct identification of the system” which this article 

deals with. The paper contains the outputs from the dynamics identification of a 

specific manipulator arm, which drives fluidized muscles from the producer 

FESTO. Three types of neural networks were used for the identification process 

itself, and their compilation and evaluation took place in the Python working 

environment. The article is formally divided into two basic parts. The first 

contains theoretical starting points from the areas of PAMs, neural networks and 

learning algorithms that were used in the experimental part. In the second part of 

the article are described: the investigated manipulator, the data used for the 

identification and the resulting models of the individual neural networks. At the 

end of the article, the different models are evaluated in terms of their effectiveness 

and possible further orientation in the field of research is outlined. 

2 Pneumatic Artificial Muscles 

The inventor of Garasiev, of Russian origin, constructed the first pneumatic 

artificial muscle (PAM) in the beginning of the 20th Century, which consisted of a 

rubber hose, in several places surrounded by rings. The rings were interconnected 

with fibers from non-stretchable material. Since the middle of the last century, 

McKibben artificial muscles have attracted more attention. This very well-known 

muscle has been designed with the intent of applying it in medical environment 

[5], [6]. Since the PAMs have many advantages (low weight, acceptable stiffness, 

high flexibility, etc.), the development of this type of drive continues to advance. 

[6] 
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PAMs work on the principle of changing muscle length when changing the 

pressure in the muscle. If the muscle is compressed by compressed air, it will 

shorten from L0 to L, increasing its volume and muscle diameter from D0 to D [7]. 

This contraction Κ will develop an external tensile force (Figure 1). The resultant 

tensile force Fm depends nonlinearly on the pressure in the muscle Pm and the 

contraction (Equation 1) [11]. The contraction  is expressed by Equation 2 [12]. 
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Figure 1 

Pneumatic artificial muscle [11] 

McKibben's artificial muscles have a relatively low lifetime. The causative factor 

is the dry friction between the fibers and the tube, so the development tries to 

eliminate this negative factor. The FESTO fluidic muscles used in the investigated 

system are designed to eliminate the friction between the strands of the muscle. 

This is secured by the fact that while the classic artificial muscle has an outer 

layer, an inner layer and endings [9], [10], the FESTO has joined both layers 

together. 

3 Learning Algorithm and Neural Network Models 

Neural networks (NN) allow you to classify or approximate any function using 

training data. They provide a higher reliability than, for example, expert systems. 

While expert systems require specific rules for their activity, neural networks can 

also work with data that contain uncertainties. The ability of neural networks to 

learn them is similar to statistics, for example, perceptron is the form of a neuron 

and is similar to a linear model. Neural networks can be taught based on learning 

algorithms. One type of learning algorithm - the Levenberg-Marquardt method - 

was chosen for this experiment. This method is mainly used for a higher number 

of synaptic weights. Using this learning algorithm, the three following NN models 

were trained: Multi-Layer Perceptron Network with 1 hidden layer, Linear Neural 

Unit, and Quadratic Neural Unit. [8], [13] 
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3.1 Levenberg-Marquardt Learning Algorithm 

Levenberg-Marquardt (LM) is one of the basic learning algorithms that is similar 

to Newton's method. LM is an iterative method combining two other methods - 

the Gauss-Newton method and the Gradient Descent method. This type of 

learning algorithm is applied to the function in order to minimize it, the solution 

being of a numerical nature and is very suitable for learning neural networks. [14] 

In the following equations, it is expressed how to proceed from Newton's method 

to the Gauss-Newton method to the Levenberg-Marquardt algorithm itself. From 

the Newton method shows that the performance index F(x) is given by Equation 3, 

where the individual members Ak and gk are given by Equations 4 and 5. [15], [16] 

1
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If F (x) is the sum of square functions and is given by Equation 6, then the 

gradient  F x of the j-th element has the form of Equation 7 or the general 

shape of the gradient  F x  in matrix form is given by Equation 8. [16] 
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The essence of the method is assembling of the Jacobian J(x), whose general 

shape is given by Equation 9. [16] 
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Next it is necessary to find a Hessian matrix, where k,j-th element of this matrix is 

expressed by Equation 10 or the general matrix form of the Hessian matrix 
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 2F x  is expressed by Equation 11. If S (x) (Equation 12) is small, then the 

matrix form of Equation 11 can be adjusted to simpler Equation 13.[16] 
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If we substitute Equations 8 and Equations 13 into Equation 3, we obtain after 

Equation 14, which represents the relation for calculating the next element xk+1 

with using Gauss-Newton method. [16] 
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The Levenberg-Marquardt algorithm (Equation 15) differs from the Gauss-

Newton (GN) method because it also contains a unit matrix I and a coefficient μk. 

This parameter brings to the LM algorithm an advantage compared to the GN 

method because the learning rate is determined based on μk value. If μk is high, the 

solution is not satisfactory, and it is not nearby of the optimal solution, so the 

learning process is slowed. If μk is small, it means that the values of parameters 

are approximated to the optimal solution. [16] 
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3.2 Linear Neural Unit Model 

The essence of the Linear Neural Unit is to find a model of the neuron yn that can 

identify the linear dependence between inputs ui and real yr outputs. The 

mathematical model of the LNU is expressed by Equations 16 and 17, where u is 

the input vector (input), the weight vector is denoted as w and k is the time index. 

Error of the neuron e expresses to what extent the model represents the real data. 

The equation for calculating this error is given by the difference between real and 

model data (Equation 18). [14], [17] 
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3.3 Quadratic Neural Unit Model 

The essence of the QNU model is similar to LNU that is to find a model that can 

identify the functional relationship between inputs and outputs. In this case 

quadratic dependence is sought. Similar to LNU, the mathematical model of QNU 

(expressed by Equations 19 and 20) contains a weight vector w, a time index k and 

a vector col u, that is polynomial. For the neuron error applies the same 

relationship (Equation 18), where is determined the difference between the real 

outputs and the model outputs. [14], [17] 
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3.4 Multi-Layer Perceptron Network Model 

Multilayer Perceptor Network is the last neural network model that has been used 

to identify the system. This is a well-known network architecture that is 

characterized by having at least one hidden layer. The base unit - the neuron, 

which is on the hidden layer, is for this type of network called the perceptron 

(shown in Figure 2). The intrinsic activity of neuron is expressed as xi. Output y is 

obtained by transforming inputs ui using the activation function φi. [13], [17], [18] 
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Figure 2 

Schema of the perceptron [18] 

The two most typical activation functions that are used for MLP networks are a 

logistic function that is defined at <0; 1> and hyperbolic tangents defined at 

intervals <-1; 1>. The mathematical formula of the logistic activation function is 

given by Equation 21 and the hyperbolic tangent by Equation 22. [18] 
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The MLP network is formed by the parallel interconnection of several 

perceptrons, and subsequently these neurons are interconnected with the neuron 

on the output layer. The basic task of the network is the approximation of each 

nonlinear function. The overall structure of the MLP network with one hidden 

layer is shown in Figure 3. [17], [18] 

 

Figure 3 

Overall structure of the MLP network with one hidden layer [18] 
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The output of the multilayer perceptron network can be mathematically 

formulated based on Equation 23 (the inputs uj, the weight of the hidden layer wij, 

the weight of the output layer wi, the activation function φi and the output y). [17], 

[18] 
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Figure 4 shows the structure of a dynamic MLP network with just 1 hidden layer 

with n number of perceptrons (or neurons). On the input layer there is an input 

vector that contains data of a dual kind. The input is the measured data, but since 

it is a dynamic system, the input also forms the yn data. This type of data is the 

output of the model from earlier epochs. The sensitivity of each perceptron is 

expressed by the weight Wi. Within the hidden layer, there are two operations, 

respectively functions. Synaptic operation is a linear function of the input vector 

and weights. Somatic operation is a nonlinear activation function given by 

Equation 24. The output layer contains an output neuron defined by the output 

data vector y and the weights of this neuron V that form a linear function. [14], 

[17], [19]  
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Figure 4 

MLP dynamic network with one hidden layer [14] 
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4 System Description 

The main object of the study was the manipulator arm system, actuated by two 

pairs of FESTO fluidic muscles. In the right part of Figure 5 is the real 

manipulator arm and in the left part is a principal schematic of the main element 

manipulator. The most basic parts of the system are two pairs of FESTO MAS-20 

muscles. The compressed air is supplied to these muscles by FIAC Leonardo 

compressor. Chain mechanism (sprocket-chain) and a pair of rotary joints serve to 

desirably deflect the arm with the load. The flow of pressurized air to and out of 

the muscles is controlled through four MATRIX EPR-50 pressure regulators. The 

regulators also incorporate built-in sensors, which ensure simultaneous pressure 

sensing in each of the muscles. The Kubler 3610 incremental sensor is used to 

measure joint rotation. The control logic signals were processed by the Humusoft 

MF624 I / O PCI card, and the Matlab and Simulink modules served to control the 

arm. 

 

Figure 5 

Principled scheme of manipulator with PAMs 
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5 Experimental Part 

The main part of the research is an experimental part. Its essence was to obtain 

data from the real system (manipulator arm with PAMs) that was used in the 

learning and testing processes. Neural network models and the learning algorithm, 

which were theoretically supported first, were created in program IDLEX. The 

output of the experimental part is the individual models, which are subsequently 

evaluated on the basis of the SSE and fit parameters and also compared to each 

other. This process served to identify the dynamics of the manipulator arm. At this 

stage we tried to identify only the dynamics of one of the axes to simplify the 

dynamic model by eliminating the presence of dynamic coupling between the 

joints. 

5.1 Training and Test Data 

For training and testing of models, measured data were needed. The relationship 

of interest was between the joint angle (output variable) and pressure difference 

between the muscles (input variable). A total of 16,667 samples were obtained 

from one axis of the manipulator arm with a sampling period of 3 ms. The data 

used in the learning or testing phase has not been sampled (?). 

Figure 6 shows the dependence of the pressure difference on the time step used for 

training and testing. For training (blue curve) the dependence itself has a 

decreasing character, since triangular excitation signal with a linear decreasing 

amplitude was used. In this measurement, a pair of muscles was initially 

pressurized to approximately 300 kPa (i.e. pressure difference was zero). After 

this the initial set-up, one muscle was discharged, and the other muscle was 

inflated. For testing (red curve) the data were obtained by generating a random 

signal with a random amplitude, the curve itself has a random course. 

 

Figure 6 

Time dependence of pressure difference for data used in training 
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5.2 Input Conditions for Models and Individual Models 

When compiling individual neural network models in IDLEX, it was necessary to 

select the input conditions. Using them should ensure the best possible 

identification of the system. The following parameters were selected for the 

identification: learning rate μ, number of epochs e, number of inputs nu, number 

of outputs ny for each model. 

A dynamic model with multilayer perceptron network with one hidden layer 

(MLP) was created, and for this type of network it was also necessary to choose 

the number of neurons in the hidden layer n1. In Table 1 is show an overview of 

the entry conditions in which the individual models achieved the best results. 

Table 1 

Comparison of input conditions for individual models 

PARAMETERS LNU QNU MLP 

LEARNING RATE 0,05 0,02 0,005 

NUMBER OF EPOCHS 4 10 10 

NUMBER OF INPUTS U 10 7 10 

NUMBER OF INPUTS Y 5 1 5 

NUMBER OF NEURONS 

ON THE HIDDEN LAYER 
--- --- 1 

For objective model comparison, it is recommended that the number of inputs and 

outputs be the same for each model. However, the Quadratic Neural Unit model 

did not work properly under the same conditions as for LNU or MLP. So, for 

QNU were chosen such initial conditions, where the model worked the most 

efficiently. 

After setting the entry conditions and creating a program, the learning and testing 

phases followed showing the results of the models and their graphical 

interpretations in the program. Each of the models is presented with some 

pictures: 3 figures relate to the learning phase, the other 3 figures to the test phase. 

For only the test phase, network weights successful in the learning phase were 

used. It follows that the graph of the time depending of the pressure difference is 

depicted in the epoch when the weights were the most suitable. 

Figures related to the learning and testing phase show: the first graph shows the 

time dependence of difference of pressures for real system (blue curve - yr or 

yr_test) and for the model (green curve – y or y_test). The second graph shows the 

error between the system and the model (red curve – e or e_test). The third graph 

shows the Sum Squared Error (SSE or SSE_test) parameter as a function of epoch 

- the black curve, which expresses the sum of the quadratic errors between the 

individual data and the diameters of their groups [14]. 
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5.2.1 Linear Neural Unit 

Figure 7 graphically interprets the output model of Linear Neural Unit after the 

learning phase. The picture shows that the LNU model was relatively well taught 

even in the low number of epochs, as evidenced by the course of the SSE 

parameter (Figure 9), which has a stable convergence progress. Differences 

between model and real data can be seen especially at curve vertices where the 

green curve is unable to reach the position of the blue curve, especially in the 

negative angles of the joint. 

 

Figure 7 

Training LNU 

 

 

Figure 8 

Training LNU – error 
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Figure 9 

Training LNU – SSE 

The results of the test phase are graphically interpreted by Figure 10-Figure 12. 

While the learning was done on data that had a decreasing character, testing was 

performed on data with random amplitude, which was reflected in the course of 

the model. In this case, the difference between the real (blue curve) and the model 

(green curve) is more pronounced. The SSE_test parameter indicates a wobble. 

 

Figure 10 

Testing LNU 

 

Figure 11 

Testing LNU – error 



M. Trojanová et al. Comparison of Different Neural Networks Models for Identification of  
 Manipulator Arm Driven by Fluidic Muscles 

 – 20 – 

 

Figure 12 

Testing LNU – SSE 

5.2.2 Quadratic Neural Unit 

In Figure 13 is a graphical representation of the Quadratic Neural Unit output 

model. The model is shown after training. A higher number of epochs was 

selected for the QNU learning and testing phase, because it is necessary for proper 

functioning (Figure 15). Training phase based on either the curve of the model or 

the progress of the SSE parameter that converges does not look the worst. 

However, it is not possible to compare this model with LNU and MLP models 

(they do not have the same initial conditions). 

 

Figure 13 

Training QNU 
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Figure 14 

Training QNU – error 

 

Figure 15 

Training QNU - SSE 

Although for QNU the most appropriate initial conditions were chosen in which 

the model achieved the highest possible efficiency, the model worked in the test 

phase worse than the other two models. The SSE_test parameter (Figure 18), like 

LNU testing, did not have a purely converging course, and when looking at the 

course of the green curve it is certain that the model was unable to fit the real data 

very well at a positive angle (above 20 °) (Figure 16). If the QNU model runs with 

the same initial conditions as LNU and MLP, the SSE parameter itself would have 

a chaotic divergence course, and the green curve of the model would not be able 

to approach towards the model in Figure 13, not even the LNU and MLP model. 

 

Figure 16 

Testing QNU 
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Figure 17 

Testing QNU – error 

 

Figure 18 

Testing QNU - SSE 

5.2.3 Multi-Layer Perceptron Network 

The last of the investigated and displayed output model was the MLP. Its 

graphical interpretation along with the course of real data, errors, and SSE 

parameters during the training phase is shown in Figure 19-Figure 21. The MLP 

model (similarly as a model LNU) has also learned well. This is evidenced by the 

course of the green curve towards the blue. The SSE parameter somewhat 

fluctuate in the first two epochs, but subsequently dropped significantly and 

converged. 

 

Figure 19 

Training MLP 
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Figure 20 

Training MLP – error 

 

Figure 21 

Training MLP - SSE 

The multilayer perceptual network, during the testing phase (10 epochs), had 

parameter SSE_test similar to the parameter SSE for the training phase (Figure 

24). In the first epoch, the parameter fluctuates, but then there was a significant 

decrease and convergence of the SSE_test parameter. The curve, like the QNU 

model, had a problem in reaching angles above 20 degrees, but below this value, 

the model was very close to real data (Figure 22). 

 

Figure 22 

Testing MLP 



M. Trojanová et al. Comparison of Different Neural Networks Models for Identification of  
 Manipulator Arm Driven by Fluidic Muscles 

 – 24 – 

 

Figure 23 

Testing MLP – error 

 

Figure 24 

Testing MLP - SSE 

5.3 Comparison of Individual Models 

The efficacy of the individual models examined in the experimental part was 

compared based on the fit parameter. It is a parameter that was calculated by the 

Matlab program after entering the following command: fit = goodnessOfFit (y, yr, 

'NRMSE'), where y are the values determined by the model and yr are real values. 

The given command sets the Normalized Root Mean Square Error (NRMSE), 

which represents the degree of difference between the predicted and the actual 

model. Equation 25 expresses the mathematical entry of the NRMSE parameter 

calculation, where x are test data, xref are reference data and fit is a row vector of 

length i. [20], [21] 

   

    

xref :,i x :,i
fit(i) 1

xref :,i mean xref :,i


 


 (25) 

Figure 25 shows individual output models along with real measured data (black 

curve). The chart also contains a numerically-expressed parameter fit for each 
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model. As above, it was suggested that models should be compared under the 

same input conditions (input and output), so the QNU will be evaluated only on 

the basis of how best it would be worked in comparison with the measured data. 

The QNU model, which is represented by the green curve, reached 77.80% in fit. 

This means that it can predict with such precision at the given input conditions. 

However, the model was not stable and was not the most appropriate for the type 

of data. 

 

Figure 25 

Comparison of output models with real measured data 

The MLP model, which is shown in the blue curve, is already comparable to the 

LNU (red curve) model because it had the same initial conditions. When 

comparing based on the fit parameter, LNU was better at 82.84%, while MLP 

reached 81.66%. However, when analyzing the course curves, the MLP network is 

able to get closer to the top of the measured data than the LNU. Even at negative 

angles, the MLP is the most accurate in each negative rotation within the three 

models compared, but in some positive angles, the measured data is exceeded. 

Conclusions 

Researchers dealing with the modeling, identification and control of 

pneumatically-powered systems are aware of the highly positive potential due to 

their use in industry. However, they are constantly confronted with shortcomings; 

therefore they need to eliminate it. That is the reason, why the effort to advance in 

research is not regressing. Several authors have already identified similar systems 

with using the Gauss-Newton method or Incremental back-propagation algorithm 

as learning algorithms, and as models using genetic algorithms, and different ARX 

and NARX models. Similarly, the authors of this article attempt to extend the 

knowledge in the area of identification of pneumatically-actuated systems by 

experimentally researches, where are comparing different methods – neural 

networks (eg, the QNU was little explored for PAM). 
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The aim of this experiment was to identify the dynamics of the system 

(manipulator arm powered by fluid muscles FESTO) using the pre-selected 

learning algorithm and 3 different neural network models. The Python program 

(or its subsystem IDLEX) was used to identify it. The LNU, QNU, and MLP 

models show that the data are relatively highly linear dependent. Of these, the best 

models were MLP and LNU, so it would be useful to test them further. The results 

also show that the use of QNU to identify this system is not the most appropriate. 

Further testing should be performed measuring to obtain a further set of 

independent data, and verifying the effectiveness of the models on these data. 

Another way to verify the effectiveness of models and their reliability is to create 

them in another program (e.g. Matlab) and compare the results. In this 

experimentunsampled data were used, since the correlation analysis showed that 

sampling of data could lead in the loss of data credibility. The correlation analysis 

was performed simultaneously for both directions of the manipulator arm joint. In 

the future, it would be advisable to perform a correlation coefficient analysis 

especially for each direction of rotation of the joint, which would allow a more 

accurate identification of the joint rotation above 20 ° in the positive direction. 
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