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Abstract: Mobile robots are designed to perform different tasks in many different fields such 

as production, fast delivery, defence industry and space exploration. Advances in mobile 

robots are crucial as they can perform tasks that are difficult, dangerous or inefficient for 

humans. In this context, we discuss the improvement of velocity planning in the rapidly 

evolving field of autonomous mobile robots. In this study, we focus on mobile robots with 

high variance in their weight. Mobile robots can transport loads or autonomous personal 

transportation vehicles such as wheelchairs, which can be given as an example of these types 

of systems. This study focuses specifically on linear velocity planning for providing the same 

performance for all payloads on the mobile robot considering comfort and safety. For this 

aim, we propose a new velocity planning method based on fuzzy logic which has several 

advantages over previous methods. The suggested algorithm is tested in simulations using 

certain performance measurement metrics. After the observation of successful results, real-

world experimental tests are performed to prove the real-time applicability of the proposed 

approach. 
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1 Introduction 

Today, the rapid evolution of technology allows the development of elements such 

as artificial intelligence, image processing and autonomous systems used in the 

design of faster, stronger and smarter robots. In parallel with the developments in 

these fields, robots play a key role in the competitiveness of the industries by 

reducing production costs and help achieve high quality standards. For this reason, 

the importance of developments and dissemination studies in the field of robotics is 

increasing day by day. Various difficulties such as path planning, velocity planning, 

and obstacle avoidance are encountered in the development of each of the different 

robots produced for different purposes. This study focuses on mobile robots that 

carry people where safety and comfort are critically important. 
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The information about road and vehicle dynamics is commonly used in velocity 

planning for ground vehicles [1, 2]. In [3], the linear and angular velocity of the 

vehicle is obtained with vehicle dynamics and tracking error that is the input of the 

Fuzzy Logic Controller (FLC). In [4], linear velocity reference is calculated by the 

curvature of the trajectory in an obstacle-free environment. In [5], another velocity 

planning method is proposed and applied to a car-like robot using an FLC, taking 

into account the predictive curvature of the road. This increases the tracking 

performance compared to the classical approaches. 

One crucial factor for reference linear velocity calculation is the environmental 

condition such as object density, distance and angle of the objects from the vehicle. 

In [1], linear velocity reference is obtained with fuzzy the controller using the curl 

magnitude of the target velocity field, and extension of the Voronoi Diagram which 

specifies the location and size of obstacles. [6] calculates reference left and right 

wheel velocity values using the angular variation from the target and the distance 

from the nearest obstacle towards left, front and right values using fuzzy rules.  

In another approach [7], the desired linear velocity is found by considering the 

minimum distance between obstacle and vehicle, the angle of the nearest obstacle 

and the steering angle values by using two cascade-connected FLC. In [8], right and 

left motor velocity are determined according to the surrounding obstacles obtained 

from the sensors on the vehicle. In another work, angle to the goal and distance and 

angle to the obstacle values are merged using fuzzy rules in [9]. 

Another factor that should not be ignored in velocity planning is driving comfort. 

In [10], an optimized velocity profile is planned by using an offline numerical 

optimization and a PD controller by considering initial and terminal conditions, road 

information and comfort criteria. In this study, comfort criteria are lateral and 

longitudinal acceleration, and lateral and longitudinal jerks constraints. In [11], the 

velocity planner uses the set of curves of the previous layer to compute analytically 

a comfort-constrained profile of velocities and accelerations, where the comfort 

criteria are maximum speed, longitudinal and lateral acceleration, and jerk. [12] 

proposes an intelligent longitudinal velocity planning method based on a fuzzy 

neural network to increase the comfort and reduce the complexity of the planning 

algorithm in autonomous vehicles. In [13] a new approach is given for the jerk 

constrained velocity optimization problem. The velocity planning problem is 

formulated as linear programming which takes comfort into account. In another 

study [14], the velocity planning function generates velocity profile candidates on 

the planned path using cubic polynomials. Then, the best candidate is selected 

considering comfort, safety and boundary conditions. Another approach in which 

the optimization problem is solved by a particle swarm optimization (PSO) 

algorithm to obtain a time optimal and smooth velocity profile is shown in [15]. 

None of the above-mentioned methods take into account the mass of the robot in 

velocity planning. In this paper, a new velocity planning method for mobile robots 

with varying mass is designed based on fuzzy logic. Fuzzy logic systems, unlike 

neural networks, can be easily modified and can easily use human expert 
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knowledge. It does not need special datasets and has relatively lower complexity. 

The proposed fuzzy system is formed by two parallel connected Mamdani-type 

Fuzzy Inference Systems for obtaining the desired velocity. The method aims to 

provide a high-level of comfort and safety and the ability to reach the target, 

regardless of changing masses. The main contribution of the proposed approach is 

considering the total mass of the robot on velocity planning. To the best of our 

knowledge, this mass parameter has not been considered in velocity planning 

before. Another novelty is removing the effect of the actuator limits, which has not 

been considered in previous works and causes problems in some scenarios for them. 

Moreover, we define a new parametric danger function for obstacles around. We 

bring a new perspective to the velocity planning problem by considering; ”previous 

velocity”, ”reference angular velocity” and ”the danger level of environment” 

parameters together. In this way, similar performance is achieved for all different 

mass values. All of these inputs have a critical effect on the velocity plan which are 

explained in the remaining parts of this paper. The autonomous wheelchair platform 

is chosen to implement and test the new velocity planning method. There are two 

main reasons for this choice. The first is that the mass of the whole system is highly 

affected by the mass of the person on the vehicle. The second is that it is a personal 

transportation device for which the safety and comfort of the user is paramount. 

The paper is organized as follows: A technical approach for the adaptive velocity 

planning problem is considered in Section 2. Section 3 simulation presents robot 

modelling, simulations and comparisons. In this section, the proposed approach is 

compared with a classical approach and constant velocity profiles. The real-world 

implementation results are discussed in Section 4. Lastly, the paper ends with a 

summary of the entire work, providing a perspective on further research topics in 

Section 5. 

2 Technical Approach 

Velocity planning has a very critical role in the autonomous mobile robot software 

stack. Different purposes can be set for it which may vary depending on the 

application. In this paper, the problem is defined as making an efficient velocity 

plan to obtain a safe travel while providing high comfort and low travel time.  

In order to achieve these conflicting requirements, we propose a design based on 

fuzzy logic. Fuzzy logic is a decision-making methodology. which is inspired by 

human thinking, taking advantage of our ability to reason with approximate data. 

Previous studies on velocity planning show that fuzzy logic has an efficient 

performance on mobile robot velocity planning problems. Instead of connecting all 

inputs to a single fuzzy decision maker which would result in a huge number of 

rules, two parallel fuzzy blocks are used in this study as shown in Figure 1.  

The remaining parts of the paper explain each block in detail. 
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Figure 1 

Velocity planner designed for wheelchair platform 

2.1 Fuzzy-1 Inference System 

Fuzzy-1 structure is created to produce a velocity plan according to safety and 

comfort which are considered two crucial factors in this study. For any ground 

vehicle that is capable of moving autonomously, any object in the view of the 

vehicle can become an obstacle. However, the important point is the danger level 

posed by the obstacles. When we drive on the road, we analyse the danger level of 

an obstacle by two criteria; distance from the vehicle to the obstacle and the angle 

between the obstacle and the vehicle’s x-axis [16]. Similarly, we analyse the danger 

level of an obstacle using the same properties which directly affect the velocity plan. 

Another crucial factor is the driving comfort if the mobile robot is carrying a human. 

The meaning of comfort is to keep the velocity and the acceleration of the 

wheelchair to be smooth and limited [17]. The acceleration or deceleration of the 

vehicle and the temporal derivative of acceleration (jerk) significantly affect driving 

safety and comfort [18]. For this reason, it is recommended to impose restrictions 

on the acceleration and jerking of vehicle movement. As an example of these 

limitations, the standard values of acceleration and jerk criteria in public road or rail 

transport in many countries are limited to 0.9-1.47 𝑚/𝑠2and 0.3-0.9 𝑚/𝑠3[10,19]. 

In Section 3.3, lateral and longitudinal accelerations are determined to define a 

comfort zone in which a comfortable driving experience is possible for a human. 

2.1.1 Structure of Fuzzy-1 Inference System 

The first fuzzy block has three different inputs which are the danger factor, the 

previous linear velocity of the vehicle and the angular velocity of the vehicle (Figure 

1). 

The danger factor is calculated by the distance and angle of objects to the vehicle 

within the area scanned by any sensor that is capable of measuring the angle and 

distance. In the design of the danger factor function, it is aimed that the obstacles in 

front and on the same path with the robot should be evaluated as more dangerous 

than others. 
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Sensors that are capable of measuring ranges like LIDAR, Depth Camera and have 

the angular range or field-of-view. Depending on the sensor’s angular resolution in 

the horizontal plane, the total number of range measurements N, is changed.  

The index of range measurement is expressed as 𝑖 𝜖 𝑍. Equation 1 defines the risk 

factor Ri for each range measurement i. dmax 𝜖 𝑅 is the maximum range that the 

sensor can measure and di 𝜖 𝑅  is the range value of the related index i. Therefore, 

di ≤ dmax and di /dmax is less or equal to 1. s 𝜖 𝑅 is the degree of the function in 

equation 1. For instance, io is the index of measurement, do is the range value of the 

corresponding measurement. As s increases do /d_max decreases, and risk factor 

(Ro) is increases. The s value is left as a tuning parameter to get the desired risk 

calculation. 

𝑅𝑖(𝑑𝑖; 𝑠, 𝑑𝑚𝑎𝑥) = (1 − (
𝑑𝑖

𝑑𝑚𝑎𝑥
)

𝑠

)                                                                          (1) 

An object in front of the vehicle is more dangerous than an object on the side of the 

vehicle. Therefore, an obstacle’s angle to the vehicle is a critical parameter of its 

danger level. A weighting function is required to increase the level of danger when 

the obstacle is directly in front of the vehicle. The bell-shaped function [20] is 

chosen to handle these desired criteria. 

As mentioned before, the index of the range measurement is i. Using the index, the 

angle between that measurement and the vehicle’s x-axis in the local frame, θi, is 

easily calculated. Since there is no necessity to calculate the risk factor at the 

backside of the vehicle, θi is restricted as −
π

2 
≤  θ𝑖  ≤  

π

2
. 

The weighting factor Wi is given in Equation 2, which determines how much each 

Ri value is affected by its angle with respect to the vehicle. There are two parameters 

in Equation 2 that can be set. As the k parameter increases, the dangerous area of 

the objects on the side of the vehicle increases. This is due to the decrease in the 

slope of the bell function. On the other hand, when the y parameter increases, the 

angle of the dangerous area in front of the vehicle increases. Wt is the sum of all 

values Wi as shown in Equation 3. 

𝑊𝑖(𝜃𝑖; 𝑘, 𝑦) =
1

1+|
𝜃𝑖
𝑘

|
𝑦                                                                                             (2) 

𝑊𝑡 = ∑ 𝑊𝑖
𝑁
𝑖=1                                                                                                          (3) 

Finally, Df which is the total danger factor of the environment is obtained with 

Equation 4. 

𝐷𝑓 = max (
𝑊𝑖

𝑊𝑡
𝑥𝑅𝑖)       𝑖 = 0, … , 𝑁                                                                       (4) 

For normalization, each weight is divided by the sum of all weights. The maximum 

value of the multiplication of Ri and corresponding normalized weight is taken as 

the danger factor. In the light of the various experiments made for three parameters, 

the coefficients to be used in this study are selected as; s = 6, k = 1 and y = 1. These 
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parameters can be adjusted by the user to get different danger characteristics. The 

danger factor representation with the determined parameters is shown in Figure 2. 

Another input of Fuzzy-1 block is the “previous linear velocity” of the vehicle. This 

is chosen as an input because of the comfort criteria. Comfort should carefully be 

taken into account for human-carrying robots and it is affected by both longitudinal 

and lateral acceleration. The sudden changes in velocity results in sharp transitions 

in longitudinal acceleration (Equation 5). These sharp transitions in velocity and 

also the high values of acceleration directly affect human comfort. 

𝑎𝑥 =
𝑉𝑡−𝑉(𝑡−1)

∆𝑡
                                                                                                         (5) 

 

Figure 2 

Danger factor representation with the parameters used during the simulations 

Another input of Fuzzy-1 block is the “angular velocity” of the wheelchair platform, 

which is calculated by the local planner to avoid obstacles and track the global path. 

The reason for taking angular velocity as an input is the lateral acceleration, which 

is a part of comfort and should be between certain values. The relation between the 

angular velocity and the lateral acceleration is centrifugal force. The centrifugal 

force Fc is calculated as shown in Equation 6 where m is the loaded weight of the 

vehicle, 𝜔 is the angular velocity, and r is the turning radius. 

𝐹𝑐 = 𝑚𝜔2𝑟                                                                                                             (6) 

Since the force is calculated as the multiplication of mass and acceleration in 

Newtonian mechanics, the lateral acceleration (αy) is specified as 𝜔2𝑟 as provided 

in Equation 7. Using the relation between angular velocity and linear velocity, the 

lateral acceleration can be written as the multiplication of linear velocity and 

angular velocity as in Equation 7. 

𝑎𝑦 = 𝜔2𝑟 = 𝑉𝜔                                                                                                    (7) 

As it is seen in Equation 7, the lateral acceleration is directly proportional to the 

angular velocity and the linear velocity. 
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After taking into account of the provided inputs, the linear velocity is the output of 

the Fuzzy-1 structure. The fuzzy rules create an adaptive velocity profile according 

to the obstacles around the vehicle and comfort criteria. The proposed structure is 

provided in Section 2.1.2. 

2.1.2 Rules of Fuzzy-1 Inference System 

The increased danger factor means that the danger level of the vehicle’s 

environment increases. In these situations, it is a priority to prevent the vehicle from 

hitting obstacles and to ensure its safety. The rules are created to reduce the linear 

velocity and make the vehicle act cautiously in these cases. 

On the other hand, rules are created to prevent the wheelchair user from being 

disturbed by linear and lateral acceleration. According to the rule set, if the angular 

velocity is large, the linear velocity is reduced for limiting the lateral acceleration. 

Similarly, the reference velocity is restricted by looking at the vehicle’s previous 

velocity for preventing a high amount of longitudinal acceleration. 

The rule base according to the designed strategy is provided in Table 1 and the 

membership functions are shown in Figure 3. 

Table 1 

Rules of Fuzzy-1 structure. VS: Very Small, S: Small, M: Moderate, H: High, VH: Very High 

 

An example is given to increase the clarity of the logic of the rule sets in Table 1. 

Linear velocity is moderate (M) if the angular velocity is high (H), the previous 

linear velocity of the vehicle is very high (VH) and the danger factor is very high 

(VH). The reason the linear velocity is not kept lower than M is that it is undesirable 

for comfort to reduce the velocity from” very fast” to” slow” or” very slow” directly. 

 

Figure 3 

Membership Functions for Fuzzy 1 
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2.2 Fuzzy-2 Inference System 

In some kinds of autonomous robots such as human-carrying vehicles or factory 

robots which carry heavy loads, sometimes the total mass changes dramatically. 

The change in the mass value causes safety and performance problems according to 

the scenario. For this reason, the second fuzzy block is designed to consider the 

effects of mass on safety and actuator limits. 

2.2.1 Structure of Fuzzy-2 Inference System 

The proposed fuzzy logic structure has two inputs; the mass and angular velocity 

and output as the mass scaling factor. The final linear velocity sent to the wheels is 

obtained by multiplying the mass scaling factor and Fuzzy-1 output as shown in 

Figure 1. 

Mass is the total mass of the vehicle and the payload which can be human. 

Considering Newton’s second law one of the primary factors that affect the 

acceleration or deceleration of the object is mass [21]. When both the mass and 

velocity of the robot is high (high momentum) it is harder to decelerate or stop. 

Hence, the high-mass vehicle can pose a danger when it has high-speed and/or it is 

close to the obstacle. Therefore, the linear velocity of the high-mass vehicle should 

be slower than the low-mass vehicle. The first aim of Fuzzy-2 block is to prevent 

such kinds of dangerous scenarios. 

The second part of the Fuzzy-2 block is to prevent the saturation of actuators, which 

may cause another safety problem. In cases where the reference angular velocity of 

the vehicle is high, if a high linear velocity is requested, the required amount of 

power for each motor increases. Since these actuators are not generally selected for 

the robots for this kind of edge scenario, one or both of the actuators may not 

provide the requested torque. This may result in dangerous scenarios as it is shown 

in Section 3.2. In order to prevent these types of accidents, reference angular 

velocity is taken into account together with the total mass, for manipulating the 

robot’s linear velocity.  

The output of the Fuzzy-2 is the mass scaling factor. This value is multiplied by 

the Fuzzy-1 output and the scaled linear velocity of the vehicle is obtained. The 

fuzzy rules create an adaptive scaling factor according to the mass and the reference 

angular velocity. The proposed structure is provided in Section 2.2.2. 

2.2.2 Rules of Fuzzy-2 Inference System 

The Fuzzy-2 rules are based on two main purposes. The first is to prevent accidents 

caused by the control signal from reaching the saturation limit. As the reference 

angular velocity increases, the linear velocity that the vehicle can reach decreases 

for the same saturation limit. Therefore, the mass scaling factor must be a small 

value to decrease the linear velocity demanded. The second is to prevent accidents 

caused by momentum. As the mass increases at the same speed, the distance is taken 
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to stop the vehicle increases. For safe driving, the vehicle should travel at a slower 

speed in high masses. Thus, the mass scaling factor should be a smaller value when 

the mass increases. For example, if the reference angular velocity is small (S) and 

the mass is very small (VS) then the mass scaling factor is very small (VS) which 

is the lowest value in the rule set. The rule base according to the designed strategy 

is provided in Table 2 and the membership functions are shown in Figure 4. 

Table 2 

Rules of Fuzzy-2 structure.  

VS: Very Small, S: Small, M: Moderate, H: High, VH: Very High Input 1: Mass 

 

 

Figure 4 

Membership functions for Fuzzy 2 

3 Robot Modelling, Simulations and Comparisons 

The proposed velocity planner is tested in the simulation environment with various 

scenarios. A dynamic mathematical model of the conventional differential drive 

electrical wheelchair is used in experiments. Detailed information about differential 

drive mobile robot dynamics and mathematical equations can be found in [22].  

The reason for using a wheelchair platform is its variable total mass depending on 

the human weight on it. From a light child to an obese adult, people of many 

different masses can ride in a wheelchair. Different velocity planners and the 

proposed method are compared on this platform. This comparison is made within 

the framework of certain metrics. The results of the metrics are critical to comparing 

the effectiveness of the proposed method numerically. 

3.1 Simulation Environment 

In order to analyse the proposed method correctly, the mobile robots must be 

imported into the simulation environment. The proposed and the reference methods 

are compared in simulations using MATLAB/Simulink and ROS (Robot Operating 

System) environment together, as shown in Figure 5. The dynamic model of the 

wheelchair is created with the help of standard differential drive mobile robot 
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equations [22]–[24], using MATLAB/Simulink. After the creation of a 

mathematical model in MATLAB, the dynamic model is imported into the ROS-

Gazebo environment. Gazebo offers accurate and efficient simulation environments 

for complex indoor and outdoor scenarios. 

Figure 5 

General simulation structure including ROS & MATLAB 

Indoor simulation environments where the obstacles can be integrated in random 

positions are created with this simulator. In order to avoid obstacles and reach to 

the goal point, Follow the Gap Method (FGM) [16] is used as a local planner which 

calculates the angular velocity in ROS side. Since we use two different tools for 

simulations, communication between MATLAB / Simulink and ROS are crucial for 

experiments. The connection between the two is shown in Figure 5. ROS operates 

based on publishers and subscribers, in other words, receivers and senders for 

information sharing. This communication between computer and root is provided 

by topics and messages. ROS toolbox in MATLAB/Simulink provides significant 

advantages for data import or export operations, which can be done from the topics 

and messages in ROS. 

3.2 Experiments and Comparison 

The proposed velocity planner is compared with three different strategies. The first 

two have constant velocity values as 1 𝑚/𝑠 and 1.5 𝑚/𝑠 constant velocities. 1 𝑚/𝑠 

is an average value and 1.5 𝑚/𝑠 is the maximum velocity for the wheelchair 

platform. The third compared method is a classical fuzzy planner [7] is referred to 

as “Classic Fuzzy” in the next parts. The classic fuzzy planner’s structure is shown 

in Figure 6. 

 

Figure 6 

Classic fuzzy velocity planner 
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In the Classic Fuzzy method, there are 2 fuzzy blocks. The first block has two inputs 

as distance (dmin) and angle of the vehicle from the nearest obstacle (θmin) 

respectively together with an output as the first risk factor (𝑟𝑓1). The second fuzzy 

structure has two inputs as the first fuzzy output 𝑟𝑓2 and steering angle (σ) and an 

output as a second risk factor (𝑟𝑓2). Since the velocity should be reduced with high 

values of risk, 𝑟𝑓2 is subtracted from 1 and multiplied by the maximum linear 

velocity that the vehicle can reach. More detailed information about this planner 

can be found in [7]. The last method to be used in the tests is the proposed adaptive 

velocity planner. All these methods are compared in 10 different test scenarios 

created with different initial and goal points together with random obstacles. 

 

(a) 

 

(b) 

Figure 7 

(a) Test environment visualization in MATLAB. (b) Test environment visualization in Gazebo 

A sample test environment in Gazebo and MATLAB is shown in Figure 7. In the 

experiments, it is aimed to observe the performance of vehicles of different masses 

with 4 different velocity planners in 10 randomly generated simulation 

environments. The kerb weight of the vehicle is 80 kg and tests are made with 5 

different payloads. The total masses used in the tests are selected as 80, 120, 140, 

160 and 200. Considering 4 different methods, and 5 different mass values in 10 

different environments, 200 experiments are carried out to compare the 

performances. The numerical comparison depending on the performance metrics is 

provided in Section 3.3. But before that, to explain the efficiency of the proposed 

method clearly, several specific experiments are visualized in the following part. 

EX 1. The main purpose of this experiment is to show that Fuzzy-2 solves the 

control signal saturation problem. Two test results are illustrated in Figure 8 where 

the first one is the proposed method and the second one is the proposed method 

without Fuzzy-2 block. It should be noted that this specific experiment is outside of 

the 200 tests mentioned above since we compare the proposed method with itself. 

It is seen that the vehicle using Fuzzy-1 as a velocity planner crashed into the 

obstacle. In order to understand the cause of the accident, the signals sent to the 

wheels are examined. In Figure 9, the reference and actual angular velocity of 

wheels are given. This simulation is performed for 200 kg of mass which requires 

higher motor torques as explained previously. 
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Figure 8 

Simulation result for 200 kg 

The system tries to turn the left by decreasing the reference angular velocity of the 

left wheel more than the right wheel. However, the motor’s torque is not enough to 

reach the reference velocity values when the mass is very high such as 200 kg. 

That’s why a vehicle cannot turn and crashes into obstacle. 

 

Figure 9 

Reference and actual angular velocity of left and right wheel for the simulation given at Figure 8.b 

The limit value of the control signal is applied to determine the maximum velocity 

values that the vehicle travels without the saturation problem. It is seen in Figure 10 

that the vehicle cannot reach its maximum velocity without a saturation problem 

when its mass is more than 140 kg. In cases where the angular velocity reference is 

changed when the vehicle is travelling faster than the linear velocity which causes 

saturation, the vehicle cannot respond to the angular velocity demand and resulting 

in safety problems as shown in Figure 8. 
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Figure 10 

Wheelchair maximum linear velocities for different masses under maximum current 

EX 2. The main purpose of this experiment is to show that the New Fuzzy Method 

gives better results than other velocity planners at high masses. Results are analysed 

for the second highest mass, as none of the velocity planners achieved the 200 kg 

target except for the New Fuzzy Method. Four test results are illustrated in Figure 

11, all conditions are the same except for the velocity planners. According to the 

simulations, all methods arrive at the goal excluding Constant 1.5 𝑚/𝑠 velocity.  

It hits the obstacle due to the control signal saturation problem. 

 

Figure 11 

The performances of 4 different velocity planners in the same scenarios. (a) Constant 1 m/s. (b) 

Constant 1.5 m/s (c) Classic Fuzzy. (d) New Fuzzy 

The Fuzzy Method is better than other methods in terms of safety and driving 

comfort, even if it reaches the target slower than Constant 1 m/s and Classic Fuzzy 

methods. It can be seen in Figure 11 that the Constant 1 m/s and Classic Fuzzy 

Methods come very close to the obstacle, which is dangerous for both the user and 

the environment. The New Fuzzy Method not only solves control signal saturation 

but also ensures a safer path at high mass. 
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EX 3. One of the critical goals of the proposed method is to show the same 

performance for all masses. In Figure 12, the performances of 4 different velocity 

planners in the same environment can be observed for 5 different masses. 

Simulation results show that the velocity profile of the mobile robot changes only 

in the New Fuzzy Method since other methods do not consider the mass in their 12 

strategies. This causes them to hit the obstacle and fail to reach the target in some 

scenarios. Moreover, the trajectories are very close to the obstacles in some 

scenarios where the robot reaches the target. On the other hand, it is clear from 

Figure 12 that the New Fuzzy Method performance is similar and safer for all the 

masses. It adapts its velocity decisions considering safety and comfort using the 

mass, angular velocity, danger factor and the previous velocity values as explained. 

 

Figure 12 

The performances of 4 different velocity planners for 5 different masses under the same initial 

conditions. (a) Constant 1 m/s Velocity Planner. (b) Constant 1.5 m/s Velocity Planner. (b) Constant 

1.5 m/s Velocity Planner. (d) New Fuzzy Velocity Planner 

3.3 Evaluation Metrics and Analysis 

In order to compare each method numerically, specific metrics are defined. These 

metrics are” the number of reaching the target”,” average travel duration”, “safety” 

and “comfort”. As it is explained previously, 50 tests for each method are performed 

for analysis. As it is illustrated in Section 3.2, the vehicle cannot reach the target in 

some scenarios. For this reason, the number of arrivals to the target is determined 

as the first metric. The second metric is chosen as average travel duration. Time 

until the vehicle reaches the destination is an important criterion for effectiveness 



Acta Polytechnica Hungarica Vol. 19, No. 9, 2022 

‒ 171 ‒ 

[25]. The third metric is about the safety of the path taken by the robot during the 

simulation. This metric measures the distance between the vehicle and the obstacle 

during travel. It records the closest point between the vehicle and obstacles during 

the simulation. 

Table 3 

Comparison of different methods with evaluation metrics 

 

The last metric is used to compare the driving comfort of the vehicle. This metric is 

obtained from the vehicle’s longitudinal and lateral acceleration during the 

simulations. For comfortable driving, longitudinal and lateral acceleration limits are 

defined to be between -1 and 1 𝑚/𝑠2, -0.9 and 0.9 𝑚/𝑠2 values, respectively, as it 

is taken in [19] for passenger comfort. A comfort zone is drawn from these intervals 

as shown in Figure 13. 

 

Figure 13 

Comfort zone with longitudinal and lateral accelerations.  

(a) Constant 1 m/s. (b) Constant 1.5 m/s (c) Classic Fuzzy. (d) New Fuzzy 

Then, the longitudinal and lateral acceleration values of the vehicle throughout the 

tests are collected [26]. To calculate the comfort metric, the number of points 

outside the comfort zone is divided by the total number of points which is the ratio 

of uncomfortable travel to the whole motion. The comfortable (red) and 

uncomfortable (blue) points of each method during the simulations are illustrated 

in Figure 13. A numerical comparison of different methods with metrics is shown 

in Table 3.3. The New Fuzzy Method is the only method that can reach the goal in 

all tests. For example, for 200 kg mass, none of the methods could reach the target 

due to actuator saturation problem, except New Fuzzy Method. In the Classic Fuzzy 
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Method [7], when the platform is 160 kg, it can reach the target in 5 out of 10 tests. 

The Constant 1m/s reaches 8 out of 10 for the 160 kg scenario since it is relatively 

slower than the classic fuzzy approach, but the average test duration metric becomes 

worse as expected. The advantage of including mass in the velocity planner is seen 

in the table. Constant 1.5 𝑚/𝑠 is not able to reach the target for the 160 kg condition. 

This shows that the New Fuzzy Method is the best among others in terms of Arrival 

to the Goal metric, as the mass increases. 

The Average Travel Duration metric should be analysed with safety and comfort 

metrics since the wheelchair may arrive at the goal faster by compromising safety 

and comfort. Even though the Constant 1.5 𝑚/𝑠 method has the fastest strategy 

which reduces average travel time, the safety and comfort metrics are worse than 

New Fuzzy Method. 

The New Fuzzy Method is 3 to 10 times better than other methods on the comfort 

metric. This is due to the consideration of the angular velocity and the previous 

linear velocity values in the Fuzzy 1 block which is different from other approaches. 

Since both classic fuzzy and new fuzzy methods consider the risk level of the 

environment, the safety metric values are close to each other and better than the 

constant velocity strategies. 

4 Real-World Implementation 

After the simulations and comparative analysis, the proposed method is applied on 

a real autonomous wheelchair platform. The wheelchair used in the tests is 

converted from a conventional differential drive electrical wheelchair with 80 kg 

mass and has the dimensions of 120 cm x 65 cm x 100 cm. The conversion 

procedure includes removing the joystick, mounting a new DC motor driver, adding 

encoders for each motor and mounting several sensors and computers. Additionally, 

an on-off button and an emergency button are added to the system for power 

management and security. The fundamental components added for drive-by wire 

and the front view of the platform are shown in Figure 14. More detailed 

information about the design of the autonomous wheelchair platform can be found 

in [27]. 

The wheelchair currently has 3 sensors in operation for perception and localization 

purposes: 1 SICK LMS-151, 1 RPLiDAR-A2M6 and 1 Intel-RealSense D435i 

camera. The RPLiDAR sensor is used for localization. The other 2 sensors are fused 

to be used for perception to widen the coverage. Since these two sensors are located 

at different heights on the wheelchair’s body, the wheelchair can detect obstacles 

efficiently. 

The fuzzy velocity planner and the other algorithms related to autonomy are 

implemented on ROS (Robot Operating System) platform. The autonomy stack uses 



Acta Polytechnica Hungarica Vol. 19, No. 9, 2022 

‒ 173 ‒ 

Rapidly-Exploring Random Tree (RRT*) [28] as a global planner. In order to follow 

the path that is produced by RRT*, linear velocity commands are produced by the 

proposed fuzzy planner and angular velocity commands are calculated by the 

Follow the Gap Method (FGM) [16]. Adaptive Monte Carlo Localization (AMCL) 

[29], is used for localization. The planner tests are conducted in Mechatronics 

Education and Research Center (MERC) at Istanbul Technical University. The grid 

map of MERC that is used for localization can be seen in Figure 15a. 

 

    (a) Side view of the wheelchair                (b) Front view of the wheelchair 

Figure 14 

Fundamental components of the wheelchair 

The test scenario consists of an obstacle which blocks the global path of the 

wheelchair. The planner is tested with 80 kg (empty wheelchair) and 160 kg 

(wheelchair carrying a person) total weights. The total path of the wheelchair for 

two different mass values can be seen in Figure 15a. As it is seen, the robot can 

reach the target successfully in both of the tests. The reference velocities computed 

by the proposed fuzzy planner during the test can be seen in Figure 15b. 

Positions of the wheelchair while crossing the obstacle can be seen in Figure 16 for 

different masses. The wheelchair crosses the obstacle closer while carrying a person 

compared to no person case. This is expected since the heavier vehicle turns harder 

and this matches with the simulation results. 

As a result, the proposed method is applied as part of the whole autonomous stack 

in real-time, without any problem. 
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(a) Paths followed during the test 

 

(b) Reference velocities from the proposed fuzzy planner 

Figure 15 

Experiment results 
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        (a) Total Mass is 80 kg           (b) Total Mass is 160 kg 

Figure 16 

Moments when wheelchair of different weights passes the barrier (80 kg – 160 kg) 

Conclusions 

A new adaptive velocity planner for autonomous mobile robots with varying mass, 

is presented in this paper. The proposed approach is proven to be successful in an 

autonomous wheelchair platform. To the best of our knowledge, the new approach 

is the first velocity planner in the literature which considers mass. Moreover, our 

approaches a novel risk function to measure the danger level of the environment. 

As another novelty, we consider the previous velocity and the angular velocity 

reference values to achieve a comfortable travel. The proposed approach is analysed 

with systematic simulations using MATLAB/Simulink and ROS simultaneously. 

The results show the efficiency of the proposed method compared to the classical 

fuzzy approach and various constant speed strategies. After simulations and 

analysis, the new method is applied on a real autonomous wheelchair platform to 

prove its applicability and success in real-world conditions. Measurement noise and 

uncertainties of the system can be taken into account to obtain a more extensive and 

robust algorithm as a future work. Further analysis can be done for other types of 

robots where the total mass dramatically changes; such as autonomous forklifts or 

load-carrying mobile robots. 
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