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Abstract: This paper introduces a novel model-based adaptive shared control to allow for
the identification and design challenge for shared-control systems, in which humans and au-
tomation share control tasks. The main challenge is the adaptive behavior of the human in
such shared control interactions. Consequently, merely identifying human behavior with-
out considering automation is insufficient and often leads to inadequate automation design.
Therefore, this paper proposes a novel solution involving online identification of the human
and the adaptation of shared control using Linear-Quadratic differential games. The effec-
tiveness of the proposed online adaptation is analyzed in simulations and compared with
a non-adaptive shared control from the state of the art. Finally, the proposed approach is
tested through human-in-the-loop experiments, highlighting its suitability for real-time ap-
plications.
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1 Introduction
It has long been known that humans are not always able to perform technical tasks
perfectly [1]. In consideration of current technological developments, the obvious
solution to this problem seems to be the replacement of the human operator with au-
tonomous systems. The human would only have to monitor these autonomous sys-
tems. However, experiences across various domains reveal inherent problems with
this approach [2]. For instance, in automated aircraft cockpits, the ”out-of-the-loop”
problem is well-documented already in the 1980s, where fully automated systems
can lead to inadequate human monitoring [3]. Recognizing these challenges, coop-
erative control systems emerge as a promising alternative. In such systems, humans
interact and cooperate with automation to perform tasks jointly, necessitating active
research in modeling and analyzing these cooperations [1].

A broad field is the cooperative shared control for the guidance of passenger cars
[4, 5]. In the vehicle, the steering wheel serves as an interface for lateral guidance,
and the pedals serve as interfaces for longitudinal guidance. Further applications,
in which humans and automation perform tasks jointly, have similar challenges to
shared control driver assistance systems. These applications include cooperative
teleoperation systems [6, 7], where the operator is supported by assistance systems,
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cooperative load carrying [8], deep-sea dredging [9], aircraft control [10], or mobile
manipulators [11]. The primary challenge in such cooperative schemes arises when
either the human fails to comprehend the automation or vice versa [12]. To over-
come this challenge, models for human actions and motion primitives are developed
to allow the automation to adapt to the human. However, the existing approaches in
the literature hinder model-based control design, which is necessary for safety and
stability investigations.

Another approach to modeling human behavior and motion is through optimal con-
trol theory [13]. This approach assumes that humans optimize an internal cost func-
tion, and this optimization leads to a control law explaining human motion. The
benefits and results of this modeling approach are discussed in numerous works in
the literature, for example, in [14] and [15]. The inverse approach, which involves
identifying such a cost function of the human, is also addressed in the literature, as
presented in [16] or [17].

In [18], it is shown that haptic interactions between humans lead to a Nash equilib-
rium, indicating the use of game theory to model shared control interactions. Based
on this idea, in [19], a systematic design of shared control is presented that can op-
timally support the human operator. For systematic design, an identification of the
human cost function is necessary. However, this cost function changes in a shared
control configuration, such that the designed controller is no longer optimal. In [20],
the identification of the players’ cost function based on a linear quadratic (LQ) dif-
ferential game formulation is proposed. That method was successfully applied in
robotic applications to identify the human motion [21–23]. Current model-based
robotics research works overlook a crucial aspect: The human adapts in shared con-
trol interaction, which necessitates an online adjustment to the automation. Such an
online adaptation1 is treated in the state of the art.

Therefore, this paper introduces an iterative model-based design approach that in-
tegrates online identification and controller design methods for shared control con-
figurations. It offers a real-time implementation, combining and extending the ap-
proaches presented in [20] and [24]. Firstly, this iterative method enables a more ac-
curate controller design in case of a poorly pre-identified human operator. Secondly,
it also facilitates an adaption of the global objective function during the operation
of the shared control system. The highlights of this paper are:

• Unifying the online identification [20] and design processes [24] for a shared
control configuration,

• Implementing the algorithm in real-time for practical application, and

• Conducting analysis using simulations and carrying out an experimental human-
in-the-loop validation.

This paper has the following structure: In Section 2, the formulation of a shared con-
trol configuration as an LQ-differential game is introduced. Section 3 presents the

1 In this paper, the terms online adjustment and online adaptation are interchangeable.
They refer to the process of readjusting the automation in response to the human adap-
tation in shared control interaction.
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online iterative method of an LQ shared control, which includes the identification
of the shared control configuration and the design of the automation. Section 4 in-
cludes a simulation example for further analysis of the proposed concept, for which
the ground truth of the human is available. The experimental setup and validation
are given in Section 5. Furthermore, the limitations of the method are discussed. Fi-
nally, Section 6 summarizes the paper and provides an outlook on further research
work.

2 Problem formulation with LQ-Differential Games
It is widely assumed in the modeling of human actions that a cost function describes
a their preferences and can be used to compute their actions. Consequently, litera-
ture often utilizes an optimal controller as a human model, as seen in various works
such as [13, 25, 26]. This optimality is utilized in this paper, to model the shared
control interaction as an LQ differential game.

Consider a differential game with players indexed by i = {a,h} ∈ P , with the dy-
namic system f ∈ Rn and the players’ cost functions J(i) ∈ R. For this work, the
following assumptions are made:

• The controlled system can be modeled as a linear system such that

ẋ(t) = Ax(t)+B(a)u(a)(t)+B(h)u(h)(t) (1)
x(0) = x0,

where A and B(i) are the system matrix and the input matrices of the player t,
respectively. The system is defined over the time horizon t ∈ [0,τ].

• The preferences of players are modeled as a quadratic cost function

J(i) =
1
2

∫
τ

0
xT(t)Q(i)x(t) (2)

+ ∑
i∈P

u( j)(t)TR(i j)u( j)(t) dt,

where i ∈ P . The matrices Q(i) and R(i j) are positive semi-definite and pos-
itive definite, respectively. The assumptions of a linear system (1) and a
quadratic cost function (2) are sufficient enough for many engineering ap-
plications see. e.g. [27].

These assumptions are also utilized in other state-of-the-art works, see e.g. [27].
The Nash equilibrium of this differential game is computed with the coupled opti-
mization problem

u(i)∗ = arg min
u(i)

J(i)(·,u(¬i)), (3)

which obtains a feedback gain by LQ-games, where i = a →¬i = h and vice versa.
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The inputs of the players are modeled with an optimal feedback gain

u(i) =−K(i)x. (4)

The Nash equilibrium of LQ-games is obtained from the solution of the coupled
Riccati equation

0 =

(
ATP(i)+P(i)A+Q(i)− ∑

j∈P
P(i)S( j)P( j)

− ∑
j∈P

P( j)S( j)P(i)+ ∑
j∈P

P( j)S(i j)P( j)
)

x(t), ∀i ∈ P , (5)

where S( j) = B( j)R( j j)−1
B( j)T j ∈ P ,

S(i j) = B( j)R( j j)−1
R(i j)R( j j)−1

B( j)T j ∈ P , i ̸= j.

The control law of the player i is calculated with the solution of 5, P(i):

K(i) = R(ii)−1
B(i)TP(i), (6)

which leads the system in a Nash equilibrium. In [27], Theorem 8.5. states that a
feedback Nash equilibrium is completely characterized by (6), thus K(i) is sufficient
for further system analysis.

The feedback control law K(i) can be computed if all the players’ cost functions
of the differential games are known. In the case of shared control interactions, the
following challenges arise:

• The cost function of the automation J(a) is to be designed by engineers, which
depends on cost function of the human J(h).

• J(h) needs to be identified, which however changes with J(a).

Thus, J(a) and J(h) have a two-way effect, which leads to the a well-known chicken
or the egg causality dilemma. This causality dilemma of shared control system is
not solved in the literature and not addressed by the existing research works. For
this challenge, a novel solution is proposed in the next section.

3 Novel Iterative Design of a Shared Control with On-
line Identification

The problem of identifying the human operator and designing the shared control2
is solved using an iterative online algorithm. This method is capable of handling
changes in human preferences, such as alterations to the cost function, and also
allows for online modification of the global objective function.

2 For the clarity note that in the following, the terms ”automation” and ”shared control”
are used interchangeably.
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Figure 1
Block diagram of the adaptive shared control design with the online estimation

The steps of the adaptive design of the shared control are depicted in Figure 1:

1 Estimation of the control laws

2 Identification of the cost functions

3 Adaptation of the automation

In the following, these steps are presented in detail.

3.1 Estimation of the control law
First, the feedback control law of the players is estimated from the measurement
data. The identification of the control law for one player case can be found e.g. in
[28] or [17]. A least-square estimation is formulated, which yields an estimation of
the control feedback gain of the player i, such that

K̂(i) = arg min
K(i)

Mk

∑
l=1

∣∣∣∣∣∣u(i)[l]− K̂(i)[l]x[l]
∣∣∣∣∣∣2

2
(7)

where [l] is the lth measurement and Mk the number of the measurements. The
minimization problem (7) is solved recursively with a recursive least-square (RLS)
with an exponential forgetting factor [29, Chapter 21]. Using (4), the control law of
the players is divided in 

u(i)1
...

u(i)j
...

u(i)p


=



k(i)1
T

...
k(i)j

T

...
k(i)p

T


︸ ︷︷ ︸

K(i)

x (8)
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The RLS provides for each measurement step the estimated feedback gain

k̂(i)j [l +1] = k̂(i)j [l]+W
(

u(i)j [l +1]− xT[l +1]k̂(i)j [l]
)
, (9)

where the weighting matrix W[l +1] is computed

W[l +1] =
PRLS[l]x[l +1]

λf + xT[l]PRLS[l]x[l +1]
(10)

PRLS[l +1] =
1
λf

(
PRLS[l]−W[l +1]xT[l +1]PRLS[l]

)
. (11)

The parameter λf is the so-called forgetting factor, which governs the dynamics of
the feedback gain K(i). Its choice is crucial since too large values and changes of
the feedback gains are not tracked fast enough. On the other hand, too small values
can prevent the convergence of the RLS.

Using (9), the feedback gains of the automation and the human in the shared con-
trol setup are estimated, which can be used for the online identification of their
cost functions. The core idea of this identification method is presented in the next
section.

3.2 Identification of the cost functions of the players

The second step of the proposed iterative design is the identification of the play-
ers’ cost functions from their control laws. In this work, the identification method
presented in [20] is used. The method is based on a reformulation of the algebraic
Riccati equations into a system of equations of the form

M(i)
θ
(i) = 0, (12)

where, the unknown parameters of the weighting matrices are summarized θ (i)3.
The main benefit of this algorithm that M(i) depends only on the system matrices
assumed to be known, as well as the estimated state feedbacks of the players K̂(i).
Such a split the know and unknown parts of the system enables a efficient identifi-
cation of players’ cost functions. In the following, the key aspects of the algorithm.
For a deeper insight, it is referred to [20].

To identify the parameters of the cost function, a residue is computed, such as
r(i) = M(i)θ (i) using (12). This residue serves as a measure of the deviation from

3 In case a shared control setup, θ (i) =
[
Q(i), R(i)

]
hold, where i = {a,h} ∈ P .
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the Nash equilibrium conditions. Minimizing this residue

min
θ (i)

θ
(i)TM(i)TM(i)

θ
(i) (13)

s.t. ILθ
(i) > 0

R(ii) > 0

results in determining the cost function parameters for humans in the shared control
configuration. The initial constraint in (13) is crucial for preventing trivial solu-
tions such as θ (i) = 0. Note that the optimization problem (13) is convex due to
M(i)TM(i) ≥ 0.

In this paper, the real-time implementation of the identification method from [20] is
provided in order to enable a online adaptation of the shared control.

3.3 Adaptation of the Shared Control

Following the core idea outlined in [19], a shared control design entails tailoring
the overall behavior of a control loop to meet high-level requirements for a given
human model. This adaptation is achieved through a optimization-based design of
the shared control. The interaction between the shared control and the human is
abstracted as a non-cooperative differential game4. Defining the most appropriate
global objective function J(g), which meets high-level requirements can be challeng-
ing the for real-world application.

As proposed in [19], the global objective function J(g) is defined as quadratic func-
tion, such as

J(g) =
1
2

∫
τend

0
x(t)TQ(g)x(t)+ ∑

j∈P
u( j)(t)TR(g j)u( j)(t) dt, (14)

where penalty matrices Q(g) and R(g j) associated with system states and inputs,
respectively, are derived from high-level requirements. The matrices in the objective
function (14) are assumed to be diagonal, such as

Q(g) = diag[q(g)1 ,q(g)2 , ...,q(g)n ],

R(g) = diag[r(g)1 ,r(g)2 , ...,r(g)N p].

This diagonalization, a common practice in optimal control theory, simplifies the
interpretation of the cost function by eliminating mixed terms outside the diagonal,
as discussed in [30].

To obtain the optimal parameters of the shared control θ (a) =
[
Q(a), R(a)

]
and to

4 High-level requirements are stem from diverse sources, including upper management,
customers, or end-users engaged in practical applications.
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compute its feedback gain K(a), J(g) is optimized such as

θ
(a)∗ =argmin

θ (a)
J(g)

(
t,τend,x(t),u(h)∗(t),u(a)∗(t),θ (a)

)
, (15a)

w.r.t ∀i ∈ {h,a}

0 =ATP(i)+P(i)A+Q(i)− ∑
j∈P

P(i)S( j)P( j) (15b)

− ∑
j∈P

P( j)S( j)P(i)+ ∑
j∈P

P( j)S(i j)P( j),

which yields the desired optimal parameters with respect to the identify human.
However, in the event an alteration in human behavior, specifically changes in their
cost function, it becomes necessary to adapt the optimal parameters of the shared
control accordingly.

This research has led to the development of a real-time implementation for (15),
allowing for the dynamic online design of model-based shared control.

3.4 Analysis for Practical Usage
In order to enable a practical use of the proposed online shared control design, the
following criteria need to be taken into account: The online shared control

a) needs to lead to a improvement of the overall performance,

b) must run in real time and

Since, the adaptation loop (see blue part in Figure 1) is an additional feedback in the
system, a convergence analysis of the adaptive shared control is essential.

Convergence of the feedback gain estimation (9) The control law of the hu-
man K̂(h) is obtained from the RLS-estimation. The ground truth of the optimal
feedback gain K(h)∗ is computed from the optimization (15). Thus, the error

e(h)K (t) =
∣∣∣∣∣∣K(h)∗(t)− K̂(h)(t)

∣∣∣∣∣∣
2

(16)

can characterize the convergence of the feedback gain estimation. If the error e(h)c (t)
convergences to zero, the identification of the human’s cost function and the update
of the automation provides a good estimation of the human control law indicating
that the parameters of the RLS-estimation are chosen properly.

Convergence of the identification (13) The convergence of (13) is ensured through
the quadratic structure as stated in [20], since M(i)TM(i) > 0 holds and therefore, the
obtained solution is unique. However, in practical application, M(i)TM(i) ≥ 0 holds,
meaning that the initial values of optimization (13) has in impact on the identifi-
cation. As M(i) is influenced by the system dynamics, a separate examination is
required for each system.
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Convergence of the adaptation (15) In the following, the control law of the au-
tomation is proofed weather the updated control law leads to a stable closed loop
system dynamics. The closed loop-system dynamics is

Acl(t) =
(

A−B(a)K(a)
adap(t)−B(h)K̂(h)(t)

)
, (17)

where the eigenvalues characterize the stability of the system. For each time steps,
the eigenvalues Λ(Acl(t)) need to be computed to verify convergence of the adap-
tation.

4 Simulation Analysis
In the forthcoming section, the efficiency of the proposed shared control and further
analysis are conducted through simulations. Simulations offer a distinct advantage
as the ground truth of human behavior can be pre-defined, enabling an in-depth
examination of the identification results given by (13). The simulations are carried
out using Matlab/Simulink, R2021b [31].

The numerical example is drawn from the practical application of vehicle manipu-
lators utilized in road maintenance tasks. Such a scenario involves a shared control,
where both a human and automation jointly operate two subsystems - the vehicle
and the manipulator. Additional details can be found in [32] or [33]. It is crucial to
note that the stability of the overall system relies on the shared efforts of both the
human (controlling the manipulator) and the automation (steering the vehicle). The
absence of either component would result in system instability. In contrast to [33],
the proposed approach assumes that the measurements or estimations all the system
states are available for the adaptive shared control.

4.1 Differential Game Formulation
For the current technical application of the vehicle manipulator, linear system dy-
namics are assumed, such as (1), where the system and input matrices are

A =

−0.1 0 0
0 0 0.9
0 0 0

 , B(h) =

0.85
0
0

 and B(a) =

1.95
0

1.25

 . (18)

The cost function of the human is in a quadratic form (2), where the weighting
matrices are

Q(h) = diag(50, 0.2, 0.2) and R(h) = 1 (19)

and the global objective function is

Q(g) = diag(35, 1, 3) and R(h) = diag(1, 1) . (20)

The linear system dynamics are defined in an error-frame relative to both the ref-
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erences of the vehicle and the manipulator. The human operator strives for precise
tracking of the manipulator reference. The automation’s primary goal is to assist the
human, indicated by the parameters of Q(g) in (20). It’s important to note that pre-
cise tracking of the vehicle reference is not crucial, resulting in considerably smaller
weights in J(g).

In order to obtain the parameters of the automation, the optimization (15) is carried
out, offline using the parameters from (19) and (20), which yields

K(h) =[3.16, −0.69, −1.88] (21a)

K(a) =[4.39, 0.69, 1.62] (21b)

for the human and the automation. In order to model the changes of the human, the
cost function is changed in the middle of the simulation to

Q(h)
ch = (0.5, 0.2, 0.2) . (22)

Consequently, the feedback gains of the human change to

K(h)
ch = [0.72, −0.38, −1.13] (23)

where the ”ch” index denotes modified values Such alterations in human awareness
may stem from factors such as fatigue or variations in environmental conditions like
dusk or fog. The forgetting factor is chosen to λf = 0.985 aiming for an optimal
trade-off between considering changes and ensuring convergence stability.

For the objective comparison between the adaptive and non-adaptive shared control,
the root-mean-square error (RMSE) of the manipulator from its reference

|dm|=

√
1
M

M

∑
k

d2
m[k]. (24)

is chosen as a measure.

4.2 Simulation Results and Discussion
In the simulation scenario, the same track is driven twice by the vehicle manipulator,
in which the cost function of the human operator changes from (19) to (22). The
simulation scenario takes 120s long and the cost function change happens t = 60s.

In the first case, the automation is not adapted, the same feedback gain is used for
the whole simulation, which is computed offline in advance. In the second case, in
every 1s, the automation is adapted according to (15).

The resulting trajectories of the vehicle manipulator are given in Figure 2, showcas-
ing the performance with and without adaptation following the transition from Q(h)

to Q(h)
ch . It can be seen that by using the proposed adaptive shared control, more

accurate tracking with the manipulator is possible. This scenario models the prac-

– 448 –



Acta Polytechnica Hungarica Vol. 21, No. 10, 2024

tical case, in which the human operator cannot concentrate on their task, therefore
more support from the automation is required. In this case, using the adaptation has
benefits and increases the overall performance of the shared control system.

The feedback gains of both the human and shared control are illustrated in Figures
3 and 4, respectively. These gains are either identified using (7) or calculated from
(15), (6). The decreasing differences e(h)K (t) over time indicate that the identifica-
tion of the feedback gain converges in accordance with (16). Furthermore, as the
human’s feedback gain decreases at t = 60s, the automation’s feedback increases,
providing more support for the human operator in their task.

In Figure 6, the adapted cost function components of the automation are given,
from which it can be seen that Q1 is increased meaning that stronger support from
the automation is necessary in order to obtain an optimal J(g) from (15)

In order to analyze the stability of the overall system, the real parts of its eigenvalues
are given in Figure 5, which shows that the system remains stable even after the
adaptation of the automation: The largest values are

max
(

Λ(Acl)
)
= [−1.44,−0.31,−0.31] .

Thus, the adaptation (15) leads to a stable overall system behavior. The measures
after the adaptation yielded |dm|w/adapt = 1.87 ·10−5 and |dm|w/oadapt = 2.03 ·10−4,
showing that the adaptation leads to a more accurate tracking compared to the non-
adaptive case. To summarize the simulation analysis, the results provide the first
proof of the concept of an adaptive shared control, which leads to a control behavior
adapted to the human operator.
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Figure 2
Comparison of the trajectories obtained from the non-adaptive shared control (solid lines) and from the

proposed adaptive case (dashed lines)
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Figure 3
The feedback gains of the human operator
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The feedback gains of the shared control

5 Experimental Validation
In order to demonstrate the functionality of the proposed online adaptive shared
control in a real-time application, the system is validated in an experimental setup.

5.1 Technical System
In this experimental setup, a human controls the manipulator with a joystick based
on the visual feedback from a simplified graphical user interface of the scenario.
The system setup is depicted in Figure 7, which is implemented using the common
Robot Operating System (ROS).
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The eigenvalues of the overall system
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Changes of the diagonal elements of the automation cost functions

The diagram at the bottom provides a more detailed view, focusing on smaller values

The components given in Figure 7 are implemented as ROS nodes. The adaptive
shared control has been auto-generated from Matlab as a C++ ROS node. The gen-
erated code is run at 25 Hz in real time. The scenario includes different types of
trajectories with sudden changes and smooth paths.
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Figure 7
Software and hardware structure of the simulator for the experimental validation of the adaptive shared

control concept.

5.2 Measurement Results

In Figure 8, a section of the resulting trajectories is given, in which the adaptive
(dashed lines) and the non-adaptive (solid lines) shared controls are compared. It
can be seen that the human operator can track the reference of the manipulator
more accurately than with the non-adaptive controller since the deviations from the
manipulator’s reference are smaller. It needs to be mentioned that the tracking of
the vehicle reference had a low priority meaning that the tracking of the reference
of the vehicle is not evaluated.

5.3 Discussion on the Optimality Principle of the Human

The simulations and the experimental validation serve as the initial proofs of concept
for the proposed adaptive shared control, demonstrating its practicality in human-
in-the-loop scenarios. The concept operates based on the optimality principle of the
human operator, implying that the feedback gains are valid when the human behaves
optimally. Thus, for proper functionality, a reasonable human behavior is required.
Furthermore, the validity of the cost function’s structure needs to be examined in
accordance to [34].

Another limitation of the proposed concept is the lack of consideration for the vari-
ability of the human, which could be a crucial aspect for acceptance, as indicated in
current research, e.g. [35]. In the case of an inadequate estimation of the human’s
feedback gain K(h), it is essential to maintain the stability of the human-in-the-loop
system. Conducting stability analysis in such scenarios requires additional meth-
ods from the literature, as discussed in [36]. Notwithstanding these limitations, this
experimental validation establishes a solid foundation, affirming that the proposed
adaptive shared control is applicable in human-in-the-loop systems.
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Figure 8
Resulting trajectories from the experiment, where the adaptive shared control (dashed lines) is

compared with the non-adaptive case. References are transparent solid lines.

6 Conclusion and Outlook
This paper presents the first proof of concept of an adaptive shared control based on
LQ-differential games. The concept unifies the identification and design processes
for a shared control configuration based on earlier works. Furthermore, the algo-
rithm is implemented in real-time for practical application. Analyses using simula-
tions are conducted, in which the advantages of the proposed adaptive shared control
are highlighted. Finally, the practical usability of the proposed concept is validated
with an experimental human-in-the-loop setup.

In future work, the choice of J(g) and its impact on the computational performance
and on the overall results will be investigated in detail. Furthermore, a study with
numerous test subjects is planned, in order to show a statistically relevant benefit of
the proposed adaptive shared control.
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