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Abstract: Robust Fixed Point Transformation-based adaptive control design was introduced
in 2009, in order to overcome some of the difficulties of certain Lypunov function-based adap-
tive control design techniques. This control method was developed for trajectory tracking ap-
plications for nonlinear second order systems. The RFPT controller, instead of refining some
kind of available dynamic model, that is neiter precise nor complete, targets the deterministic
behavior of the trajectory tracking error, by finding the correct control signal in an iterative
manner. In each control cycle a single step of iteration is made. In this paper a variation of
the RFPT control method is introduced, where concurrent adaptive control and model identi-
fication is applied, based on Recursive Least Square Algorithm and a Hammerstein model. In
the proposed control scheme the estimated control response is used to apply multiple iterative
steps, that way increasing the adaptation speed of the controller. The proposed solution was
tested on experimental basis in a DC motor control application. The increased adaptation
speed of the proposed method resulted in more precise trajectory tracking.

Keywords: Robust Fixed Point Transformation; Hammerstein Model; Recursive Least Square
Algorithm; Adaptive Control.
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1 Introduction
The development of adaptive control techniques commenced in the 1950s, with ini-
tial applications in servo systems [1] and flight control [2]. In these early stages the
MIT-rule was widely used in Model Reference Adaptive Control (MRAC) design,
however it became apparent that this method is prone to unexpected instability [3, 4].
Although the theoretical foundation for stability analysis was already established by
Lyapunov [5, 6] at the end of the 19th century, the first practical implementations
in the adaptive control framework was only introduced in the 60s e.g., one of the
pioneering work was published by Parks et al. [7]. In his work the gradient search
method used for control parameter tuning in the MIT-rule was replaced with a Lya-
punov function based tuning procedure in an MRAC design. Since then, Lyapunov
function based adaptive control design techniques became one of the most popular
tools in MRAC, e.g. [8, 9], and in countless other methods that have been devel-
oped over the last few decades for adaptive control of nonlinear systems [10]. Such
as, some classic approaches as Adaptive Inverse Dynamics [11, 12] or Slotine Li
Adaptive Control [13], that was developed in field of robotics or the backstepping
method [14] that got great deal of attention in the recent years [15, 16].

In 2009 a Robust Fixed Point Transformation-based (RFPT) adaptive control de-
sign was introduced [17]. This iterative control method was developed for trajectory
tracking applications, where a sufficiently smooth nominal trajectory (qN(t)) must
be precisely followed by a nonlinear second order system such as a CNC machine or
a robot. However, over the years various application areas were investigated for ap-
plying Fixed Point Iteration-based (FPI) adaptive control techniques, such as anes-
thesiology [18, 19], treating diabetes [20, 21], classical mechanical systems [22],
controlling DC motors [23], neuron models [24, 25]. The main motivation behind
the development of RFPT method is to overcome some of the design difficulties of
the Lyapunov function-based techniques, that is summarized in [17] as:

• During the design process of such controller the Lyapunov function (V (x(t), t)))
is constructed as function of various states (x(t)). For stability analysis the
non-increasing nature of V̇ < 0 (for asymptotic stability) must be proven.
However, from V̇ < 0 we cannot conclude for the elements of x that the prop-
erty d|xi|

dt < 0 would be valid. So the system states may change in various
manner, that is not desirable e.g., in life science applications;

• The control method concentrates on the asymptotic stability of the controller
and the behavior of the system in the initial transient phase is overshadowed.
That might be unacceptable in some applications, again e.g., in life sciences.
Although some methods exist, such as e.g., adaptive funnel control to ensure
transient behavior [26].

To avoid these problems, the RFPT controller places in the center of attention def-
inite behavior of the trajectory tracking error, that is the difference between the
nominal (qN(t)) and realized trajectory of the system (qR(t)), e(t) = qN(t)−qR(t).
Essentially this control method is an adaptive variation of Computed Torque Con-
trol (CTC) [27, 28] that is widely used in robotics. The stucture of the controller is
shown in Fig. 1.
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In CTC method the desired trajectory of the second derivative of the generalized co-
ordinates (q̈Des(t)) is calculated purely on kinematic basis e.g., using a simple PID
(Proportional-Integral-Derivative) feedback rule. In order to linearize and decouple
the nonlinear dynamics of the controlled system the inverse dynamic model is used
to calculate the control force to be exerted on the system, Q(t)=F−1(q(t), q̇(t), q̈Des(t)).
However, it became apparent in the 90s that it is practically impossible to develop a
precise dynamic model for control purposes [29]. So the available imprecise inverse
dynamic model (F̃−1(·)) results in

q̈R(t) = F(q(t), q̇(t), Q̃(t)) ̸= q̈Des(t) (1)

where F(·) is the function of the actual system dynamics and Q̃(t) denotes the gen-
eralized force that includes the disturbance and the control force, too, that was cal-
culated based on the imprecise dynamic model.

Figure 1
RFPT control schematics for a DC motor with encoder based position measurement and backward dif-
ference estimator with low pass filter

The RFPT control method was inspired by Banach’s Fixed Point Theorem [30],
that states that a contractive function f : B 7→ B which generates a sequence as
{x0,x1 = f (x0)...xn = f (xn−1)} that converges to the unique fixed point x∗ = f (x∗),
where B is linear, complete metric space, a Banach Space. The basic idea of RFPT
control is that instead of refining the available imprecise model, it applies an iterative
solution to find the control force Q(t) that would result in q̈R(t) ≈ q̈Des(t) system
response. Essentially the control task is transformed to a Fixed Point Problem and
by the use of Contractive Mapping a sequence is generated that converges to the
solution of the control task. In practice it means that instead of q̈Des(t) a deformed
value (q̈De f (t)) is generated using an appropriate deformation function, as q̈De f (t) =
G(q̈Des(t), q̈De f (t − δ t), q̈R(t − δ t)) and the qDe f (t) is used to calculate the control
force resulting in

q̈R(t) = F(q(t), q̇(t), F̃−1(qR(t), q̇R(t), q̈De f (t)))≈ q̈Des(t) . (2)

So q̈De f (t) is found in an iterative manner, where in each control cycle a single step
of iteration is made, with the initial condition q̈De f (0) = q̈Des(0). Compared to CTC
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in RFPT control, in case of a 2nd order system, not only the first order derivative
but also the second order derivative is fed back with some delay δ t, that usually
corresponds to the sampling time of the digital controller. For the implementation
detail of the adaptive deformation function (G(·)) various methods can be found
besides that was proposed in [17]. For example the solution was extended for MIMO
systems [31, 32]. In [33] a so called ”Abstract Rotations” method is introduced
based on a simple geometric interpretation to replace G(·), in order to make the
controller tuning process easier. In order to address noise sensitivity of the solution
a continuous variant of G(·) is suggested in [34] based on the idea of Luenberger
observer [35]. The RFPT control was also implemented in an MRAC framework
in [36]. Further advantage of FPI control is that it can be combined with many
different control approaches. For example in [37, 38] the simple PID rule in the
kinematic block was replaced by fractional order inspired feedback solution, that
was characterized by a finite memory length to improve control performance. In
similar manner, in place of the kinematic block a Control Lyapunov Function was
introduced in [39]. It was also shown that it can enhance the control performance
of various Lyapunov function based control design as Adaptive Inverse Dynamics
[40], Slotine-Li Adaptive Control [41] or the backstepping method [42].

In conclusion the following properties of the RFPT method inspired the current
article:

• the RFPT controller does not make any effort to identify the controlled sys-
tem. Instead of that it applies an iterative approach to find the control force
that results in sufficient trajectory tacking performance. Although, in recent
years some methods were suggested for FPI control and concurrent model
identification e.g., in [43, 44] Particle Swarm Optimization algorithm and in
[45] a simple Least Squares Fit method was used to identify the model param-
eters. In both cases it was assumed that the mathematical form of the model
was precisely known, and only the model parameters were adjusted;

• the adaptive deformation used in RFPT method can compensate for various
modeling deficiencies. It was shown in [46] that even the simplest affine
model in form of Q̃(t) = Aq̈De f (t)+B, where A and B are the model param-
eters, can result in sufficient control performance in certain applications. In
[46] this property of the RFPT method was exploited to avoid state estimation
for an under-actuated system;

• in FPI control in each control cycle a single step of iteration is made, so the
convergence rate of the iterative process, and also the tracking precision is
limited by the sampling time (δ t) of the controller. Although, in [47, 48,
49] Steffensen’s method was applied in an FPI controller to accelerate the
convergence of the iteration.

The novelties introduced in this paper are twofold. At first model identification
process of a nonlinear Hammerstein model using Recursive Least Squares (RLS)
algorithm is applied in an RFPT adaptive control scenario. Furthermore, on the
basis of the already identified model form during one digital control step more than
one fictive iterative steps are applied for the calculation of the necessary adaptive
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deformation. The proposed method is tested on experimental basis, in a simple DC
motor control application.

This paper is organized in the following manner. In Section 2 some implementation
details of the RFPT controller is introduced, with special emphasis on the formula-
tion of the kinematic prescription for q̈Des(t) and the adaptive deformation function.
In Section 3 the Hammerstein Model and the RLS algorithm is introduced and ap-
plied in the RFPT control framework. Section 4 presents the experimental results
and finally in Section 5 the conclusions are summarized.

2 Robust Fixed Point Transformation
The error relaxation rule of RFPT control can be formulated in various manners.
One potential solution is to implement the following prescription(

Λ+
d
dt

)3

eint(t) = 0 , (3)

for the integrated trajectory tracking error (eint(t) =
∫ t

t0

[
qN(ξ )−qR(ξ )

]
dξ ). Con-

sidering that ë(t) = q̈N(t)− q̈(t), the desired value of the 2nd order derivative of the
generalized coordinates is given as

q̈Des(t) = q̈N(t)+Λ
3eint(t)+3Λ

2e(t)+3Λė(t) , (4)

where Λ > 0 is a single design parameter and Kp = 3Λ2, Ki = Λ3, Kd = 3Λ are the
PID gains of the controller. The solution of (3) as an LTI (Linear Time Invariant)
system can be written as linear combination of 3 exponential terms

eint(t) =
2

∑
ℓ=0

cℓ(t − t0)ℓ exp(−Λ(t − t0)) , (5)

in which the {c0,c1,c2} parameters are determined by the initial conditions. Evi-
dently, from (5) it is easy to see that in some time, depending on the control param-
eter Λ, eint(t) → 0 as t → ∞. In similar manner the decreasing nature of e(t) and
ė(t) can be seen, considering that (5) can be rewritten as,(

Λ+
d
dt

)3

eint(t) =
(

Λ+
d
dt

)[(
Λ+

d
dt

)2

eint(t)

]
= 0 , that leads to (6)

(
Λ+

d
dt

)2

eint(t) =
(

Λ+
d
dt

)[(
Λ+

d
dt

)
eint(t)

]
= 0 , and finally (7)(

Λ+
d
dt

)
eint(t) = 0 from which again eint(t) = 0 . (8)

Equation (7) gives us
(
Λ+ d

dt

)
e(t) = −Λeint(t), in which the inhomogeneous part

will vanish in some time, considering that eint(t) → 0 as t → ∞. So it can be
concluded that e(t) → 0 as t → ∞. In similar manner from (6) we can write that
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(
Λ+ d

dt

)
ė(t) = −Λ2eint(t)− 2Λe(t) and again we can conclude that ė(t) will con-

verge to zero as t → ∞ as well, because of the fact that eint(t), e(t)→ 0 as t → ∞, .
Finally, it is evident that by precisely implementing q̈Des(t) not only eint(t), but also
e(t) and ė(t) will converge to 0 in some time.

However, without the precise inverse dynamic model of the controlled system, it is
practically impossible to precisely implement q̈Des(t) as it was shown in Section 1.
In case of RFPT control an adaptive deformation is applied on the desired value. In
[17] the suggested deformation function, assuming that a digital controller is used
for implementation, where the control force is applied on the system in deterministic
manner over a time grid t ∈ {0,δ t,2δ t, ...,kδ t}

q̈De f (t) =
(
Kc + q̈De f (t −δ t)

)[
1+Bc tanh

(
Ac
(
q̈R(t −δ t)− q̈Des(t)

))]
−Kc . (9)

In (9) the Ac, Bc and Kc parameters must be tuned by the user based on the following
considerations. If q̈De f (t)< q̈De f (t +δ t) results in q̈R(t)< q̈R(t +δ t) where,

q̈R(t) = F(q(t), q̇(t), F̃−1(qR(t), q̇R(t), q̈De f (t))) and (10)

q̈R(t +δ t) = F(q(t +δ t), q̇(t +δ t), F̃−1(qR(t +δ t), q̇R(t +δ t), q̈De f (t +δ t))) (11)

then F(·) is an increasing function so Bc = −1. Furthermore, due to the saturation
of the function tanh(·), in the initial phase of the control when q̈R(t −δ t)≫ q̈Des(t)
the G(·) deformation function in (9) will approximate −Kc. On the other hand, if
q̈R(t −δ t)≪ q̈Des(t), G(·) will approximate the 2q̈De f (t −δ t)+Kc affine function.
Essentially, in case of a sufficiently large Kc value, the system will be driven towards
q̈Des(t) with a constant control force, due to the increasing nature of F(·). Similar
considerations can be made for decreasing F(·) functions as well, with Bc = 1.
In close vicinity of the fixed point, when q̈De f (t − δ t) = q̈∗(t)± ε , ε ∈ R+, the
contractivity of (9) must be ensured by proper tuning of parameter Ac.

A function f : B 7→ B is contractive if | f (a)− f (b)| ≤ β |a − b| with 0 ≤ β <
1. Such function will generate a convergent Cauchy Sequence in a Banach space
(Banach’s Fixed Point Theorem, see Section 1). To guarantee the contractivity of
f (·), its derivative must satisfy that | f ′(·)| ≤ β < 1, since

| f (a)− f (b)|=
∣∣∣∣∫ b

a
f ′(x)dx

∣∣∣∣≤ ∫ b

a
| f ′(x)|dx ≤ β |a−b| . (12)

The derivative of (9) is given as

G′(·) =
(
1+Bc tanh(Ac(F(·)− q̈Des(t)))

)
+

(
(q̈De f (t −δ t)+Kc)BcAcF ′(·)

cosh2(Ac(F(·)− q̈Des(t))

)
(13)

where q̈R(t−δ t)=F(q(t−δ t), q̇(t−δ t), F̃−1(qR(t−δ t), q̇R(t−δ t), q̈De f (t−δ t)))=
F(·). For an increasing function F(·) F ′(·)> 0, and since Kc is a large value, while
Bc = −1, Ac must be a sufficiently small e.g., it can be redefined a Ac/Kc, to en-
sure that |G′(·)|< 1. Equation (13) reveals also limitation of RFPT control as well,
since if the system dynamics is fast (high F ′(·)) compared to the iteration process
we cannot ensure that |G′(·)|< 1 so the iteration will become divergent. Essentially,
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this means that with the feedback of q̈R(t − δ t) we do not gain any useful insight
on the system dynamics as it changes too fast. In practice, this could make it harder
to control systems that have dead-zone nonlinearities or stick-slip behaviour. This
is because the iteration might temporarily become different during certain parts of
the control process. The optimal parameter setting of the RFPT method was inves-
tigated in [50].

3 Model identification in RFPT control
Most mechanical and electro-mechanical systems, such as robots or even a simple
DC motor exhibit some kind of nonlinear behavior, stemming from friction phe-
nomena [51], actuator dead-zone [52] or backlash of the drive system [53, 54] etc.,
that must be compensated by the controller. These nonlinear phenomena makes the
identification and control of such systems more difficult. To capture the essence of
these nonlinearities various, sometimes quite complex models have been developed
and applied in control applications over the years such as, LuGre friction model
[55]. Other methods rather utilize some kind of general model form e.g., Hammer-
stein model [56] tuned purely from input-output measurements, in order to capture
the nonlinearities of the controlled system. The latter solution seems to be advan-
tageous in an RFPT control design, since it does not require heavy work from the
control designer as the development of complex models with various nonlinear com-
ponents and the RFPT method can be considered as quasi data driven control ap-
proach. It was also shown in [57] that the Hammerstein model can capture various
nonlinearities that are the characteristics of electro-mechanical systems.

3.1 Introducing the Hammerstein Model
The Hammerstein model has a simple structure, which consists of a static input
nonlinearity and a dynamic linear subsystem as shown on Fig. 2. The nonlinear part
is often represented with a polynomial function [57, 58, 59]

u(t) = γ1Q(t)+ γ2Q2(t)+ ...+ γnQn(t) , (14)

where γi, i∈{1,2, ...,n} are the coefficients of the nonlinear block, u(t) is an internal
signal of the model that serves as an input to the linear subsystem. The linear part
can be designed in various manners as well, a plausible and widely used solution
(e.g., [57, 60]) is an ARX (Autoregressive Exogenous) model

q̈R(t)+α1q̈R(t −δ t)+α2q̈R(t −2δ t)+ ...+αna q̈R(t −naδ t) =

= β0u(t)+β1u(t −δ t)+β2u(t −2δ t)+ ...+βnbu(t −nbδ t) . (15)

By combining (14) and (15)

q̈R(t) =
nb

∑
j=0

n

∑
k=1

β jγkQk(t − jδ t)−
na

∑
ℓ=1

αℓq̈R(t − ℓδ t) , (16)

q̈R(t) =
nb

∑
j=0

β jQ(t − jδ t)+
nb

∑
j=0

n

∑
k=2

β jγkQk(t − jδ t)−
na

∑
ℓ=1

αℓq̈R(t − ℓδ t) . (17)
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Finally, (17) results in a linear regression form as

q̈R(t) = ψ
T (t)Θ(t) (18)

where Θ(t) =
[
−α1 ...−αna β0 ...βna κ02 ...κnb2 κ0n ...κnbn

]
is the parameter

array with κ jk = β jγk, j ∈ {0,1, ...,nb}, k ∈ {2,3, ...,n} and

ψ
T (t) = [q̈R(t −δ t) ...q̈R(t −naδ t) Q(t) ...Q(t −nbδ t)

Q2(t) ...Q2(t −nbδ t) ...Qn(t) ...Qn(t −nbδ t)]

is the observation array, that contains only the measurable signals. The advantage of
the regression form in (18) is that the Θ(t) parameter matrix can be simply estimated
using a Recursive Least Squares (RLS) Algorithm [61].

Figure 2
Hammerstein model structure

3.2 Recursive Least Square Algorithm
Lets introduce Θ̃(t), that is the estimate of the model parameters in (18). Then,
utilizing various input-output measurement data (ψT (t)) the system response can
be estimated as

q̈E(t) = ψ
T (t)Θ̃(t) . (19)

The update law for the parameter estimate can be formulated based on the Least
Square method by introducing the estimation error ε(t) = q̈R(t)− q̈E(t) and

S =
1
2

m

∑
k=0

(
q̈R(t − kδ t)− q̈E(t − kδ t)

)2
=

=
1
2

m

∑
k=0

(
q̈R(t − kδ t)−ψ

T (t − kδ t)Θ̃(t − kδ t)
)2

, (20)

m = t
δ t and minimizing S as ∂S

∂θi
= 0, resulting in

Θ̃(t) = (ΨT (t)Ψ(t))−1
Ψ

T (t)Y (t) , (21)

where Ψ(t) =
[
ψT (t −mδ t) ... ψT (t −δ t) ψT (t)

]
and

Y (t) =
[
q̈R(t −mδ t) ... q̈R(t −δ t) q̈R(t)

]
. However, the calculation of

(ΨT (t)Ψ(t))−1 is computationally demanding and it seems reasonable, especially
in case of digital controllers, that instead of recalculating Θ̃(t) in each control cy-
cle, use an update law that utilizes Θ̃(t − δ t) and the estimation error of qE(t) =
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ψT (t)Θ̃(t −δ t). Such method is called Recursive Least Square Algorithm and it is
widely used in adaptive control and system identification [61, 62]. The RLS method
works under the assumption that P(t) =ΨT (t)Ψ(t) is non singular and it has inverse
for all t, so (21) can be rewritten as

Θ̃(t) = P(t)
m

∑
k=0

(
ψ(t −mδ t)q̈R(t −mδ t)

)
=

= P(t)(
m

∑
k=1

(
ψ(t −mδ t)q̈R(t −mδ t)

)
+ψ(t)q̈R(t)) . (22)

Utilizing that

P−1(t) =
m

∑
k=0

ψ(t − kδ t)ψT (t − kδ t) =

P(t−δ t)︷ ︸︸ ︷
m

∑
k=1

ψ(t − kδ t)ψT (t − kδ t)+ψ(t)ψT (t) ,

(23)

and (21)

m

∑
k=1

ψ(t −mδ t)q̈R(t −mδ t) = P(t −δ t)Θ̃(t −δ t) =

= P−1(t)θ̃(t −δ t)−ψ(t)ψT (t)Θ̃(t −δ t) . (24)

Now substituting (24) into (22) we get that

Θ̃(t) = Θ̃(t −δ t)+P(t)ψ(t)
(
q̈R(t)−ψ

T (t)Θ̃(t −δ t)
)
=

= Θ̃(t −δ t)+P(t)ψ(t)
(
q̈R(t)− q̈E(t)

)
, (25)

which is the model parameter update law for the RLS algorithm. Furthermore, by
applying the Sherman-Morrison-Woodbury formula, that is
(A+BCD)−1 = A−1 −A−1B

(
C−1 +DA−1B

)−1 DA−1 with A = P−1(t − δ t), B =
DT = ψ(t), C = 1 on the inverse of (23)

P(t) = P(t −δ t)
(

Ip −
ψ(t)ψT (t)P(t −δ t)

1−ψT (t)P(t −δ t)ψ(t)

)
, (26)

where Ip is an identity matrix of same dimensions as P(t). From (25) and (26)
it is evident that both Θ̃(t) and P(t) are updated in a recursive manner, which is
computationally more efficient than the matrix inversion in (21) that is good for
online identification.

3.3 Proposed Multiple Step RFPT Control
In this paper a novel RFPT control design is introduced that is supported by an on-
line identification of a nonlinear Hammerstein model. The structure of the proposed
modification is given in Fig. 3. The essence of the method is that the model param-
eters of (18) are recursively updated in each control cycle using (25) and (26), in
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order to ”learn” the system dynamics ψT (t)Θ̃(t − δ t) ≈ F(q(t), q̇(t),Q(t)). Then
in each control cycle, the identified model is employed to implement a series of
iterative steps. The subsequent section of the paper introduces new notation. The
number in the subscript of any variable indicates the number of the iterative step to
which the quantity corresponds to. For-example, q̈De f

i (t) is the deformed value of
the second derivative of the generalized coordinates after the ith iterative step at time
t. In the proposed solution the adaptive deformation is modified as

q̈De f
i (t) =

{
G(q̈Des(t), q̈De f (t −δ t), q̈R(t −δ t)) if i = 1
G(q̈Des(t), q̈De f

i−1 (t), q̈
E
i−1(t)) if i > 1

where , (27)

q̈E
i (t) = ψ

T (t)Θ̃(t −δ t) ; (28)

and i ∈ {1,2, ....,s}, s ∈ N is set by the user. Essentially instead of introducing
q̈De f

1 (t), that is the deformed value after a single step of iteration, into the approxi-
mate dynamic model, the iteration is virtually continued in the future using the same
approximate model and the the identified Hammerstein model (28) to forecast the
system response. After making s ∈ N virtual steps in the future, in the control pro-
gram the latest deformed value is placed into the variable q̈De f

s (t), and the control is
continued by the use of this improved deformed value. In this manner, instead us-
ing only one adaptive parameter Ac that must be as large as possible to achieve fast
convergence in vicinity of the fixed point, the adaptivity can be made finer by using
a smaller Ac parameter with a few forecasting steps s. The concurrent application
of the model parameter identification and RFPT control ensures precise tracking
from the beginning of the control, while trajectory tracking precision will be further
improved over time.

Figure 3
Improved RFPT control with model identification and multiple adaptive steps

The expectation that in this manner some improvement can be achieved is based on
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the experience that there exist several data driven techniques that are able to build
up some useful model of the controlled system by fresh observations. In these tech-
niques certain generally valid structures can be “filled in” with the observed data
so that these general structures are not related to any specialties of the observed
system. For instance, Petriu in [64] distinguished between three main types as gen-
erally model-free controllers (e.g., [65]), virtual reference feedback tuning-based
controllers (e.g., [66]), and model-free adaptive controllers (e.g., [[67], [68]]). In
[69] the abstract rotations-based formalism was suggested to create a formal struc-
ture to be used by the data driven techniques. Fényes et al., e.g., used pace regression
for using noise filtered signals for the estimation of the quality of road surfaces and
tire pressure in [70, 71]. His idea is akin to our proposal to use the fitted model form
in (28). In this paper a simple experimental validation is made for the proposed
control solution with a DC motor and the results are presented in the next section.

4 Experimental Results
The proposed solution was subjected to experimental testing in a DC motor control
application. The FIT0185-type 12 VDC motor is equipped with an incremental
encoder and a planetary gearbox. The encoder resolution is 16 pulses per motor
revolution; however, due to the 1:131 reduction ratio of the planetary gearbox, 2096
pulses can be counted during one output shaft revolution. This number was further
increased by a factor of four using quadrature decoding of both encoder channels.
The motor shaft was connected to a spring and the disturbance force exerted by it
can be expressed as,

QL(t) = θwq̈(t)+Dslelt sinq(t)

(
1− lr0√

l2
e + l2

t −2lelt cosq(t)

)
, (29)

where θw is the inertia of the coupling, Ds is the spring constant, le denotes the
length of the lever on which the loading torque of the spring is applied, lt is the
distance between the fixed mounting point of the spring and the motor shaft and
finally lr0 is the length of the spring corresponding to q = 0 angular motor position.
(shown in Fig. 4).

Figure 4
Mechanical design of the experimental setup (left) and simplified dynamic model (right)
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A simple block diagram of the experimental setup is given in Fig. 5. The control al-
gorithm was implemented on a Teensy 4.0 development board equipped with ARM
Cortex-M7 processor. The adaptive deformation was applied on the PWM (Pulse
Width Modulation) output of the controller. The output shaft position of the motor
(qR(t)) was measured using the inbuilt encoder and higher derivatives (q̇R(t), q̈R(t))
were estimated using second order backward difference formulae,

q̇R(t) =
3qR(t)−4qR(t −δ t)+qR(t −2δ t)

2δ t
, (30)

q̈R(t) =
2qR(t)−5qR(t −δ t)+4qR(t −2δ t)−qR(t −3δ t)

δ t2 . (31)

Figure 5
Simple Block Diagram of the Experimental Setup

The noisy signals were filtered using a simple digital implementation of an IIR
(Infinite Impulse Response) low pass filter design [63]

q̇S(t) = bq̇S(t −δ t)+a(q̇R(t)+ q̇R(t −δ t)) , (32)

q̈S(t) = bq̈S(t −δ t)+a(q̈R(t)+ q̈R(t −δ t)) . (33)

The control objective was to precisely track a sinusoidal nominal trajectory given as

qN(t) = At cos(ωtt) (34)

where At = 4π and ωt = 2π0.1. The low pass filter parameters were b= 0.90999367
and a = 0.04500317 that corresponds to a fc = 15Hz cut-off frequency. The Ham-
merstein model parameters were n= 2 for the static nonlinear block and na = nb = 3
for the dynamic linear subsystem. For the recursive identification process in (25)
and (26), Θ̃(0) = [0 0 ... 0] and P(0) = P0Ip with P0 = 100 initial values were
used. The design parameter for (4) kinematic prescription was chosen Λ = 15 s-1,
while the adaptive parameters in (9) were Bc = −1, Kc = 1000000 s-2 and finally
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Ac =
0.5
Kc

. In case of the proposed multiple step variant of the RFPT method in each
control cycle s = 3 adaptive steps were made. The approximate inverse dynamic
model (F̃−1(·))

QPWM(t) = Amq̈De f
s (t)+Bm (35)

where the model parameters are simply set as Am = 1 and Bm = 0, essentially di-
rectly converting q̈De f

s (t) to PWM value in order to control the H-bridge used for
driving the motor. The adaptive deformation was applied to the system after the
1500th control step, and in the first 12500 control cycle only a single step of itera-
tion was made.

Table 1
Control Performance Indices for all Experimental Measurements

No Spring Load Step Count emax µe σe

1

No Spring Attached

1

0.00423 0.00046 0.00042
2 0.00487 0.00050 0.00049
3 0.00497 0.00050 0.00049
4 0.00528 0.00055 0.00052
5 0.00584 0.00058 0.00061
6

3

0.00296 0.00052 0.00037
7 0.00230 0.00049 0.00035
8 0.00345 0.00051 0.00036
9 0.00164 0.00043 0.00031
10 0.00258 0.00053 0.00038
11

Spring Attached

1

0.00708 0.00083 0.00091
12 0.00793 0.00076 0.00094
13 0.00831 0.00076 0.00096
14 0.00814 0.00078 0.00097
15 0.00819 0.00076 0.00096
16

3

0.00303 0.00055 0.00040
17 0.00268 0.00054 0.00039
18 0.00289 0.00057 0.00042
19 0.00284 0.00053 0.00038
20 0.00201 0.00047 0.00033

In the testing procedure, 20 consecutive measurements were made in different con-
figuration that are summarized in Table 1. For comparison purposes the following
control performance indices were introduced:

• Maximum absolute tracking error: emax = max
i=1,2,..,N

(|e(i)|);

• Average absolute tracking error: µe =
1
N ∑

N
i=1 |e(i)|;

• Standard deviation of the trajectory tracking error: σe =
√

1
N ∑

N
i=1 (|e(i)|−µe)2.
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The performance indexes were calculated only for the 25− 40s interval, that way
eliminating the effects of the transient phase. From Fig. 6 we can see that after a
relatively short transient phase a precise trajectory tracking was achieved. In this
scenario the spring was not applied on the shaft of the motor. On the left-hand
side of the figure, qN(t) and qR(t) values are displayed and the quantization error
of the position measurement can be observed. As it is shown in the right-hand side
of Fig. 6, the control performance is mainly improved in the low velocity regime
where actuator dead-zone and stick-slip effect appear. These observations are also
supported by the findings presented in Table 1 as the average (µe) and the deviation
(σe) of the trajectory tracking error are within the same range for the unloaded
motor. However, the maximum of the absolute trajectory tracking error exhibits
a decline with the increase in the number of iterative steps.

Figure 6
Angular Position of the output shaft of the DC motor (left) and trajectory tracking error (right) - s denotes
the number of iterative steps in each control cycle

Figure 7
Angular velocity (left) and acceleration (right) measurement results - s denotes the number of iterative
steps in each control cycle

In Fig. 7 the measurement results are displayed for the higher derivatives of the
generalized coordinates. These signals are significantly affected by the quantization
error of the position measurement due to the application of the backward difference
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formulae in (30) and (31), that way the application of the low pass filter is necessary.
The feedback noise can be further decreased by the use of higher resolution encoder.

Figure 8
Deformed and desired values of the second derivative of the generalized coordinates for the multiple
iterative step case (left) and the single step case (right)

Figure 8 displays the essence of the RFPT method. It is clearly visible that the
deformed value q̈De f (t) is significantly different from the desired one q̈Des(t) due
to the applied adaptive deformation. Furthermore, the desired trajectory is nicely
implemented as q̈Des(t)≈ q̈N(t). On the other hand, it also reveals that the proposed
modification makes the controller more noise sensitive due to the repeated iterative
steps.

Figure 9
Angular Position of the output shaft of the DC motor (left) and trajectory tracking error (right) with the
spring mounted on the motor shaft- s denotes the number of iterative steps in each control cycle

The advantage of concurrent model identification and multiple iterative steps are
more evident in the second experimental scenario involving time-varying loading
conditions, as illustrated by the spring attached to the motor shaft. In the case of
s = 1 step RFPT method, that does not utilize the identified Hammerstein model,
oscillations can be observed in angular position of the motors shaft in the low ve-
locity regime as shown in the left-hand side of Fig. 9. On the other hand, precise
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trajectory tacking was maintained in the case of s = 3 iterative steps without oscil-
lations. Further comparison can be made based on Table 1. It reveals the increased
robustness of the controller, since in the case of s = 1 iterative steps all performance
measures exhibited increasing nature under time varying load condition, however
with s = 3 iterative steps performance measures were kept in the same range. All in
all, the proposed solution seems more robust against modelling deficiencies due to
the increased adaptation speed of the controller.

Figure 10
Deformed and desired values of the second derivative of the generalized coordinates for the multiple
iterative step case (left) and the single step case (right)

5 Conclusion

In this paper a new variation of the RFPT control method was proposed where, con-
current model parameter identification of a nonlinear Hammerstein model and adap-
tive control was applied. The solution was inspired by the modern data driven con-
trol techniques where some kind of general model form is filled in with data, based
on some fresh observation of the system response, that way building a meaningful
model of the controlled system. The proposed control method involves the imple-
mentation of multiple iterative steps within each control cycle. These iterations are
executed based on the forecasted system response, as determined by the identified
Hammerstein model. The proposed solution can be applied for a class of nonlinear
systems with second order dynamics, that are subject to actuator dead-zone or fric-
tion nonlinearities, where the conventional RFPT controller is less efficient. As an
example, an important application area is cutting processes. Due to material inho-
mogeneity or the rough surface of the raw material, a continuously changing chip
cross-section is created. Because of this, the machining process must be contin-
uously controlled [72]. The experimental results presented in this paper, demon-
strated enhanced control performance, particularly in the low-velocity regime, in
the case of a DC motor control application. Furthermore, an improvement in the
robustness of the controller was observed under varying loading conditions of the
DC motor. On the other-hand, the noise sensitivity of the proposed solution was
observed, that limits the number iterative steps in each control cycle.
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