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Abstract: Robust Fixed-Point Transformation-based (RFPT) Adaptive Control was 

introduced in 2009, as an alternative to certain Lyapunov function-based design techniques. 

The basic idea behind this control method is to transform the control task into a problem of 

finding a fixed-point in a complete metric space by a contraction mapping. The convergence 

rate of the iteration can be manipulated with some adaptive parameters, and some of them 

dependent on the dynamics of the controlled system. In this paper the potential of Wegstein's 

method in enhancing the convergence rate was investigated. As demonstrated in 

experimental trials on a DC motor, the implementation of Wegstein's method can improve 

the trajectory tracking performance in certain scenarios. However, the online tuning of the 

Wegstein parameter is difficult, in the presence of measurement noise. A solution is proposed 

in this paper, for a moving average estimation of the first order derivative of the iterative 

function, with exponential smoothing, to ensure stable calculation of the Wegstein parameter. 

Keywords: Fixed-Point Iteration; Convergence Acceleration; Wegstein; Adaptive; Motor 

Control; Robust Fixed-Point Transformation 

1 Introduction 

Fixed-Point Iteration has been extensively used in numerical analysis, particularly 

in the case of problems involving non-linear phenomena. In the last few decades, 

the convergence properties of iterative sequences have been widely investigated, 

however one of pioneering work was published by Banach in 1922 [1]. According 

to Banach's fixed point theorem in a complete metric space, which is since then 
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called Banach space, a contractive self-mapping Φ: ℬ ↦ ℬ, that is, any mapping for 

which there exist 𝐾 ∈ [0,1[ such that ∀𝑦, 𝑥 ∈ ℬ 

|Φ(𝑦) − Φ(𝑥)| ≤ 𝐾|𝑦 − 𝑥| (1) 

converges to a unique fixed point 𝑥⋆, i.e., for which Φ(𝑥⋆) = 𝑥⋆. It was also shown 

that a simple iteration in the form of {𝑥0, 𝑥1 = Φ(𝑥0), … , 𝑥𝑛+1 = Φ(𝑥𝑛), … } can be 

used to find the unique fixed point. Nevertheless, many alternative methodologies 

have been proposed for finding a fixed point. Among these e.g., the Mann [2] and 

Ishikawa [3] iteration process are particularly prominent. 

Speeding up the convergence of certain iterative processes have been key area of 

interest in the research of fixed-point theory. Some classical notable methods are 

Aitken's delta-squared process [4], the Steffensen Accelerator [5], Wegstein's 

method [6] or the Anderson Mixing method [7]. 

In [8] Aitken's delta-squared process was used to estimate contouring error in case 

of a 3-axis motion control application. It was demonstrated that convergence 

acceleration not only ensured sufficient computation time, but iterative divergence 

was also avoided in some cases. The application of Anderson Mixing method was 

investigated for an iterative closest point problem [9] which has shown robust 

behavior, and it was efficiently handling even noisy datasets as well. Anderson 

Acceleration was also applied in [10], where it was demonstrated that, in the context 

of an inverse problem in imaging, the Anderson Acceleration reduces the net time 

of iteration as convergence occurs more rapidly. However, it should be noted that 

the method requires more time per iterative step due to computational complexity. 

Wegstein's method is often used in chemical process simulations e.g., [11] [12]. 

In the field of adaptive control of nonlinear second order systems, a simple fixed- 

point iteration-based scheme was introduced in 2009 [13]. The authors have 

suggested the application of a deformation function in order to transform a 

Computed Torque Control (CTC) scheme into a fixed-point problem. The solution 

was named Robust Fixed-Point Transformation-based (RFPT) Adaptive Control, 

that have demonstrated improved trajectory tracking precision, when the dynamic 

model of the controlled system was neither complete nor precise. In order to further 

increase the tracking precision of the RFPT method the use of Steffensen 

Convergence Accelerator was suggested Kósi et al. in [14]. Later a similar idea was 

introduced in case of a novel adaptive sliding mode controller in [15] [16]. 

The idea of using Steffensen convergence accelerator technique stems from the fact 

that the speed of convergence can be slow when parameter 𝐾 in (1) is close to 1. 

Steffensen realized that it is expedient to break the infinite sequence into finite 

number excerpts as {𝑥0, 𝑥𝑛−1 = Φ(𝑥0), 𝑥𝑛 = Φ(𝑥𝑛−1)} in which 𝑥0 does not 

originate as a function of a previous point of the sequence. Instead of that, in the 

vicinity of the fixed point the derivative of Φ(𝑥), i.e., Φ′(𝑥𝑛−1) can be estimated 

as: 

Φ′(𝑥𝑛−1) ≈
Φ(𝑥𝑛−1)−Φ(𝑥𝑛−2)

𝑥𝑛−1−𝑥𝑛−2
=

𝑥𝑛−𝑥𝑛−1

𝑥𝑛−1−𝑥𝑛−2
 (2) 
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and in first order Taylor estimation, instead of generating 𝑥𝑛+1 = Φ(𝑥𝑛) of the 

Banach sequence immediately try to find the fixed point as 

 Φ(𝑥𝑛−1 + Δ𝑥) = 𝑥⋆, that with the above estimation of the derivative leads to the 

approximation Φ(𝑥𝑛−1 + Δ𝑥) ≈ Φ(𝑥𝑛−1) + Φ′(𝑥𝑛−1)Δ𝑥, i.e.: 

Δ𝑥 =
(𝑥𝑛−𝑥𝑛−1)(𝑥𝑛−1−𝑥0)

−𝑥𝑛+2𝑥𝑛−1−𝑥0
 (3) 

The value 𝑥𝑛−1 + Δ𝑥 will be the initial element of the next excerpt of the sequence 

that can be written into the next starting variable 𝑥0. To avoid division by zero by 

the introduction of the small positive constant 0 < ϵ the following approximation 

can be done 

𝑥0
𝑛𝑒𝑥𝑡 ≈ 𝑥𝑛−1 +

(𝑥𝑛−𝑥𝑛−1)(𝑥𝑛−1−𝑥0)(−𝑥𝑛+2𝑥𝑛−1−𝑥0)

𝜖+(−𝑥𝑛+2𝑥𝑛−1−𝑥0)2   (4) 

It must be noted that in his original paper in [5] Steffensen also utilized other special 

observations on the nature of the Banach sequence that he applied in his formula. If 

in the adaptive control we restrict ourselves to observations made for the freshest 

considered excerpt, for the estimation of the derivative obtaining the values 

Φ(𝑥0) = 𝑥𝑛−1, and Φ(𝑥𝑛−1) = 𝑥𝑛 cannot be avoided. This attitude is reasonable 

because in our case the function Φ(𝑥) has a hidden parameter 𝑥𝐷𝑒𝑠 as Φ(𝑥; 𝑥𝐷𝑒𝑠), 

and this parameter in the control process is not exactly constant: it can slowly drift 

according to the kinematic design applied in the adaptive control. Therefore, using 

the fresh information obtained from the observations seems to be expedient. 

In addition to the Steffensen method, the use of other convergence accelerating 

techniques are not yet explored in the field of Fixed-Point Iteration-based (FPI) 

Adaptive Control. In this paper Wegstein's method is investigated in order to 

improve the convergence rate and hence the tracking precision of an FPI controller. 

This method seems advantageous when it is compared to the Steffensen 

Accelerator. The latter one requires two iterative steps for each improved estimation 

according (4), whereas Wegstein’s method, requires only a single iterative step. It 

appears that this is more appropriate for FPI control, in which a single iteration is 

executed within each control cycle, resulting in a fixed point that shifts with each 

cycle. In addition, the experimental results are presented for a simple DC motor 

control application. 

2 Robust Fixed Point Transformation-based 

Adaptive Control 

In case of a trajectory tracking application the trajectory tracking error is defined as 

𝑒(𝑡) = 𝑞𝑁(𝑡) − 𝑞𝑅(𝑡), where 𝑞𝑁(𝑡) is the nominal trajectory and 𝑞𝑅(𝑡) is the 

realized trajectory of the generalized coordinates. Defining an error relaxation rule 

as (Λ +
d

d𝑡
)

3

𝑒𝑖𝑛𝑡(𝑡) ≡ 0, the kinematic prescription for the second order derivative 

of the generalized coordinate is formed: 
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𝑞̈𝐷𝑒𝑠(𝑡) = 𝑞̈𝑁(𝑡) + Λ3𝑒𝑖𝑛𝑡(𝑡) + 3Λ2𝑒(𝑡) + 3Λ 𝑒̇(𝑡)    (5) 

where 𝑒𝑖𝑛𝑡(𝑡) is integrated trajectory tracking error 

(𝑒𝑖𝑛𝑡(𝑡) = ∫ (𝑞𝑁(𝜉) − 𝑞𝑅(𝜉))d𝜉
𝑡

𝑡0
), 𝑞̈𝐷𝑒𝑠(𝑡) is the desired value of the second order 

derivative of the generalized coordinates that should be precisely implemented by 

the controller and finally Λ > 0 is a single design parameter and 𝐾𝑝 = 3Λ2, 

𝐾𝑖 = Λ3, 𝐾𝑑 = 3Λ are the PID gains of the controller. 

In Computed Torque Control the inverse dynamic model (𝐹−1(⋅)) is used to 

linearize and decouple the nonlinear dynamics of the controlled system, so the 

control force (𝑄(𝑡)) is given as: 

𝑄(𝑡) = 𝐹−1(𝑞̈𝐷𝑒𝑠(𝑡), 𝑞̇𝑅(𝑡), 𝑞𝑅(𝑡))     (6) 

However, in case of an imprecise dynamic model 𝐹̃−1(⋅), the control force 

𝑄̃(𝑡) = 𝐹̃−1(𝑞̈𝐷𝑒𝑠(𝑡), 𝑞̇𝑅(𝑡), 𝑞𝑅(𝑡)) applied to the system, results in: 

𝑞̈𝑅(𝑡) = 𝐹 (𝑄̃(𝑡), 𝑞̇𝑅(𝑡), 𝑞𝑅(𝑡)) ≠ 𝑞̈𝐷𝑒𝑠(𝑡)      (7) 

To resolve this issue, in [13] it was suggested to introduce a deformed value 𝑞̈𝐷𝑒𝑓(𝑡) 

which in combination with the imprecise model 𝐹̃−1(⋅) still results in precise 

implementation of 𝑞̈𝐷𝑒𝑠(𝑡) that would be required by (5). In essence, the control 

task is converted into a problem of finding the correct control force (𝑄(𝑡)) to which 

the controlled system responds by some desired response (𝑞̈𝐷𝑒𝑠(𝑡)). The suggested 

deformation was formulated as: 

𝑞̈𝐷𝑒𝑓(𝑡) = (𝐾𝑐 + 𝑞̈𝐷𝑒𝑓(𝑡 − 𝛿𝑡)) ∙  

∙ [1 + 𝐵𝑐 tanh (𝐴𝑐(𝑞̈𝑅(𝑡) (𝑡 − 𝛿𝑡) − 𝑞̈𝐷𝑒𝑠(𝑡)))] − 𝐾𝑐 (8) 

where 𝐴𝑐, 𝐵𝑐 and 𝐾𝑐 are parameters that should be set by the user and 𝛿𝑡 is the 

sampling time of the controller. Since (ℝ, ‖∙‖) forms a complete metric space (8) 

will converge if (1) holds. In the case of a differentiable function φ(𝑥): ℝ ↦ ℝ the 

integral estimation can be used as 

𝜑(𝑏) − 𝜑(𝑎) = ∫ 𝜑′(𝜉)d
𝑏

𝑎
𝜉                   (9a) 

|𝜑(𝑏) − 𝜑(𝑎)| ≤ ∫ |𝜑′(𝜉)|d
𝑏

𝑎
𝜉                                                          (9b) 

Therefore, if |φ′| < 𝐾 < 1 can be guaranteed, since |φ(𝑏) − φ(𝑎)| ≤ 𝐾|𝑏 − 𝑎|, 
i.e., the function will be contractive. If 𝑞̈𝐷𝑒𝑠(𝑡) does not vary drastically, a 

response function can be introduced as: 

𝑞̈𝑅(𝑡) = 𝐹 (𝐹̃ (𝑞̈𝐷𝑒𝑓(𝑡), 𝑞̇𝑅(𝑡), 𝑞𝑅(𝑡)) , 𝑞̇𝑅(𝑡), 𝑞𝑅(𝑡)) ≈ 𝑅(𝑞̈𝐷𝑒𝑓(𝑡) ) 

The derivative of (8) is given as: 

𝐺′(∙) = (1 + 𝐵𝑐 tanh(𝐴𝑐(𝐹(∙) − 𝑞̈𝐷𝑒𝑠(𝑡)))) +
𝐵𝑐𝐴𝑐𝑅′(∙)(𝑞̈𝐷𝑒𝑠(𝑡−𝛿𝑡)+𝐾𝑐)

cosh2(𝐴𝑐(𝐹(∙)−𝑞̈𝐷𝑒𝑠(𝑡)))
 (10) 
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so (1) holds if 𝑅(⋅) changes slowly and the adaptive parameters are tuned properly, 

with special emphasis on the 𝐴𝑐 that has the most significant effect on the rate of 

convergence [17]. 

The operation of the controller, in case of a digital implementation, can be 

summarized as: 

• In each control cycle the 𝑞̈𝐷𝑒𝑠(𝑡) is calculated based on (5) 

• The 𝑞̈𝐷𝑒𝑠(𝑡) value is deformed using (8) hence: 

𝑞̈𝐷𝑒𝑓(𝑡) = 𝐺(𝑞̈𝐷𝑒𝑓(𝑡 − 𝛿𝑡), 𝑞̈𝐷𝑒𝑠(𝑡), 𝑞̈𝑅(𝑡 − 𝛿𝑡)) is obtained. In the first 

control cycle a boundary condition is used i.e., 𝑞̈𝐷𝑒𝑓(0) = 𝑞̈𝐷𝑒𝑠(0) 

• The deformed value is used to calculate the control force from the 

available dynamic model 𝑄̃(𝑡) = 𝐹̃−1 (𝑞̈𝐷𝑒𝑓(𝑡), 𝑞̇𝑅(𝑡), 𝑞𝑅(𝑡)) 

• The control force 𝑄̃(𝑡) is exerted on the system and response is observed 

It can be observed that in each control cycle a single step of iteration is made and 

the fixed point is shifting with each control cycle as given by (8). Moreover, in the 

case of a second-order system, it is important to note that not only the first-order 

derivatives of the generalized coordinates are fed back, as indicated by equation (5), 

but the second-order coordinates are also fed back with a delay of δ𝑡. 

The authors note that the kinematic prescription (5), can be formulated in several 

ways. Some suggestions are e.g., a Control Lyapunov Function-based design [18] 

or back stepping type solution [19]. The same holds for the adaptive deformation 

(8). Some possible variation was introduced e.g., in [20] in order to extend the 

solution for MIMO systems, the noise sensitivity was addressed in [21] or the 

solution in [22] that uses a simple geometric interpretation. 

3 On the Use of Wegstein's Convergence Accelerator 

in Adaptive Control 

In his original paper in [6] Wegstein considered finding the fixed point of 

Φ(𝑥⋆) = 𝑥⋆ ∈ 𝑅 in a Banach space with the iterative sequence 

{𝑥0, 𝑥1 = Φ(𝑥0), … , 𝑥𝑖+1 = Φ(𝑥𝑖), … }. From this function he introduced a different 

one by using the parameter 𝑞 ∈ 𝑅 as follows: 

Ψ(𝑥) ≝ 𝑞𝑥 + (1 − 𝑞)Φ(𝑥)  (11) 

Evidently, Ψ(x⋆) = qx⋆ + (1 − q)Φ(x⋆) = qx⋆ + (1 − q)x⋆ = x⋆ i. e. , Ψ(x) has 

the same fixed point as Φ(𝑥) . With this new function a similar iterative sequence 

can be generated as {𝑥0, 𝑥̂1 = Ψ(𝑥0), … 𝑥̂ℓ+1 = Ψ(𝑥̂ℓ), … }. Parameter 𝑞 can be 

used for manipulating the convergence properties of the new sequence that can be 
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used for finding 𝑥⋆ instead of the original iteration. For this purpose, we can 

consider (9) as the satisfactory and necessary condition of convergence as: 

 −1 <
dΨ

d𝑥
= 𝑞 + (1 − 𝑞)Φ′ < 1     i.e. 

−1 − Φ′ < 𝑞(1 − Φ′) < 1 − Φ′ (12) 

1) Case Φ′ > 1: Then  1 − Φ′ < 0, therefore it yields 

1 <
−1−Φ′

1−Φ′ =
Φ′+1

Φ′−1
> 𝑞 >

1−Φ′

1−Φ′ = 1  (13) 

2) Case Φ′ = 1: Then (12) states that −2 < 0 that does not have any 

restriction for 𝑞. 

3) Case −1 < Φ′ < 1: Then 1 − Φ′ > 0, therefore it is obtained that: 

0 >
−1−Φ′

1−Φ′ =
1+Φ′

Φ′−1
< 𝑞 < 1  (14) 

4) Case Φ′ = −1: Then (12) means that 0 < 𝑞 < 1 

5) Case Φ′ < −1: Then 1 − Φ′ > 2 > 0 and (12) means that: 

0 <
−1−Φ′

1−Φ′ =
1+Φ′

Φ′−1
< 𝑞 < 1 (15) 

The above considerations guarantee that it is always possible to find 

a parameter 𝑞 that makes the modified sequence 

{𝑥0, 𝑥̂1 = Ψ(𝑥0), … 𝑥̂ℓ+1 = Ψ(𝑥̂ℓ), … } convergent. 

For the practical use of the formulae it can be noted that the starting value of the 

considerations can be 𝑞 = ±ε, in which ε > 0 is a small positive number. If at least 

the sign of Φ′ is fixed in the problem, going over or under the value of 𝑞 = 1 

convergence can be achieved. 

3.1 Online Parameter Tuning 

According to (12) the fastest convergence would be achieved at 

𝑞 + (1 − 𝑞)Φ′ = 0 leading to: 

 𝑞 =
Φ′

Φ′−1
                   (16) 

therefore the estimation of the derivative e.g., by the trick suggested by Steffensen 

in [5] or by any other approximation can be expedient. A simple estimation for 𝑞 

can be given by the use of a backward difference formulae: 

Φ′ ≈
Φ(𝑥̂𝑛)−Φ(𝑥̂𝑛−1)

𝑥̂𝑛−𝑥̂𝑛−1
=

𝑥𝑛+1−𝑥𝑛

𝑥̂𝑛−𝑥̂𝑛−1
   (17) 

The above solution requires a single step of iteration in order to obtain 

𝑥𝑛+1 = Φ(𝑥̂𝑛). 
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3.2 Application for the FPI-based Adaptive Control 

In the case of single variable systems, the deformation function of the Robust Fixed-

Point Transformation in digital control framework can be used for constant 𝑖 ∈ 𝑁 

for slowly varying 𝑞̈𝐷𝑒𝑠(𝑡) as: 

𝑞̈𝐷𝑒𝑓(𝑖 + 1) = 𝐺 (𝑞̈𝐷𝑒𝑓(𝑖), 𝑞̈𝑅(𝑖), 𝑞̈𝐷𝑒𝑠(𝑖 + 1)) ≈ Φ (𝑞̈𝐷𝑒𝑓(𝑖))             (18) 

The original control parameters 𝐾𝑐, 𝐵𝑐, and 𝐴𝑐 made it possible to manipulate the 

speed of convergence within certain limits determined by the ‘’response function’’ 

𝑅(⋅). The introduction of Wegstein’s relaxation parameter allows direct 

manipulation of the convergence behavior of fixed-point iterations, potentially 

accelerating convergence or mitigating divergence. However, some limitations may 

arise for application in control systems. Particularly, estimation of the relaxation 

parameter can be compromised by measurement noise. This makes the direct use of 

analytical expressions such as equation (17) unreliable. A more robust estimation 

of the derivative of the fixed-point mapping can be achieved using moving window 

estimation in the following manner: 

Φ′
𝑤 ≈

∑ (𝑥𝑛+1−ℓ−𝑥𝑛−ℓ)𝑤
ℓ=0

∑ (𝑥̂𝑛−ℓ−𝑥̂𝑛−1−ℓ)𝑤
ℓ=0

=
𝑥𝑛+1−𝑥𝑛−𝑤

𝑥̂𝑛−𝑥̂𝑛−𝑤
  (19) 

This telescoping formulation reduces computational complexity and improves 

numerical stability, making it well-suited for real-time applications where noise and 

limited precision are concerns. 

4 Experimental Results 

The use of Wegstein's method in an FPI control application was experimentally 

tested with an FIT0185 12V DC motor, that was driven by a BTS7960 chip-based 

dual half bridge drive. The control algorithm was implemented on an ARM Cortex-

M7 microprocessor, and the adaptive deformation was applied on the PWM output 

of the controller. The angular position of the motor's shaft was measured with the 

inbuilt encoder by the use of quadrature decoding. Higher derivatives were 

estimated using second order backward difference formulae: 

𝑞̇𝑅(𝑡) =
3𝑞𝑅(𝑡)−4𝑞𝑅(𝑡−δ𝑡)+𝑞𝑅(𝑡−2δ𝑡)

2δ𝑡
 (20a) 

q̈R(t) =
2qR(t)−5qR(t−δ t)+4qR(t−2δ t)−q𝑅(t−3δ t)

δ t2  (20b) 

Due to the quantization error of the position measurement, the noisy higher order 

derivatives were filtered using second order Butterworth low pass filter with  

𝑓𝑐 ≈ 30Hz cut-off frequency. The design parameter for the PID-type feed according 

(5) was set to Λ = 12s-1 and the adaptive design parameters in (8) were 𝐵𝑐 = −1 
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and 𝐾𝑐 = 106. The sampling time of the controller was 

δ𝑡 = 0.001s. The controller was tested in a "quasi" model free form as: 

𝑄̃(𝑡) = q̈Def(𝑡) (21) 

The derivative of the fixed-point mapping was estimated using eq. (19) with a 

window length of 𝑤 = 15. Additionally, exponential smoothing was applied on the 

estimate in the form of: 

Φ′S
𝑤(𝑡) = 𝛼Φ′

𝑤(𝑡) + (1 − 𝛼)Φ′S
𝑤(𝑡 − 𝛿𝑡)             (32) 

where 𝛼 = 0.5 controls the smoothing factor. This approach helps mitigate abrupt 

changes in the derivative estimate, promoting smoother convergence behavior. 

Furthermore, in order to ensure stable convergence of the iteration and avoid 

excessive deformation of 𝑞̈𝐷𝑒𝑓(𝑡), the Wegstein relaxation parameter 𝑞 was 

constrained in the [−1,1] interval. 

In order to enhance the non-linear behavior of the control system a spring with 

unknown stiffness was attached to the motor's shaft. The experimental setup is 

shown in Fig. 1. 

 

Figure 1 

Experimental setup with a DC motor: mechanical design (left), control electronics (right) 

The measurements were carried out with different springs and adaptive parameter 

(𝐴𝑐) settings. For comparison purposes, the following control performance indices 

were introduced: 

• Maximum absolute tracking error: 𝑒𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖=1,2,..,𝑁(|𝑒(𝑖)|) 

• Average absolute tracking error: μ𝑒 =
1

𝑁
∑ |𝑒(𝑖)|𝑁

𝑖=1  

• Standard deviation of the trajectory tracking error: 

σ𝑒 = √
1

𝑁
∑(|𝑒(𝑖)| − μ𝑒)2

𝑁

𝑖=1
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Some measurements results are presented in Fig. 2, for a DC motor without 

convergence acceleration. In this application the motor must track some sinusoid 

trajectory as precisely as possible without any load. As it is presented by the position 

measurement and phase trajectory, after short settling time, the tracking is precise. 

The quantization error in position measurement gives rise to substantial noise 

components in the higher derivatives however, it is effectively attenuated by the 

applied filter without significant delay. 

 

 

 

Figure 2 

Measurement Results for DC motor without load – without convergence acceleration 

The effect of the adaptive deformation is presented in Fig 3. where, significant 

difference can be observed in the deformed and desired signals. The controller 

effectively compensates for modelling imprecisions, the 𝑞̈𝐷𝑒𝑠(𝑡) trajectory nicely 

follows the nominal prescription 𝑞̈𝑁(𝑡). For comparison purposes the trajectory 

tracking error for the RFPT and the Accelerated RFPT (with Wegstein) is presented 

here as well. The adaptive parameters were tuned with trial-and-error method trying 

to achieve the best control performance for both control scenarios. After a settling 

time of approximately 𝑡𝑠 < 3s, precise trajectory tacking was achieved with 

maximum absolute trajectory remaining under 0.006rad despite the 0.00075rad 

encoder resolution. At the beginning of the control process, slightly less overshoot 

can be observed for the Accelerated RFPT controller. However, the quantitative 
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comparison in Table I indicates that the standard RFPT controller performed 

marginally better overall. 

 

Figure 3 

The effect of adaptive deformation (left) and trajectory tracking error comparison (right) – Adaptive 

Parameter setting for RFPT: 𝐴𝑐 =
0.4

𝐾𝑐
 , Accelerated RFPT: 𝐴𝑐 =

0.3

𝐾𝑐
 

Table I 

Control Performance Indices 

 𝒆𝒎𝒂𝒙  𝛍𝒆 𝛔𝒆 

RFPT (Spring: -) 0.00702 0.00133 0.00111 

Accelerated RFPT (Spring: -) 0.00784 0.00164 0.00124 

RFPT (Spring: 𝑫𝟏) 0.03794 0.00387 0.00388 

Accelerated RFPT (Spring: 𝑫𝟏) 0.03140 0.00364 0.00361 

RFPT (Spring: 𝑫𝟐) 0.24170 0.01766 0.03338 

Accelerated RFPT (Spring: 𝑫𝟐) 0.16466 0.01168 0.02075 

 

 

Figure 4 

Trajectory tracking error comparison for DC motor with spring load 𝐷1 (left) < 𝐷2(right) stiffness – 

Adaptive Parameter setting for RFPT: 𝐴𝑐 =
0.4

𝐾𝑐
 , Accelerated RFPT: 𝐴𝑐 =

0.3

𝐾𝑐
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Additional experiments were conducted using the same DC motor loaded with 

springs of varying, but unknown, stiffness, that is 𝐷1 < 𝐷2. The results are 

presented in Fig. 4 which show the trajectory tracking error for the RFPT and 

Accelerated RFPT controller. In the case of the spring with 𝐷2 stiffness, the motor 

experienced overloading, which resulted in the divergence of the iteration and poor 

tracking performance. Nevertheless, the accelerated controller recovered faster with 

shorter transient phase and less overshoot. This is further supported by the data 

presented in Table I. Alternatively, the Accelerated RFPT controller improved 

marginally in case of the softer spring with 𝐷1 stiffness. 

Conclusions 

In this paper, the application of Wegstein's convergence acceleration method was 

investigated, in the domain of RFPT-based adaptive control. The proposed solution 

for online tuning of the relaxation parameter, based on Wegstein’s idea, resulted in 

increased trajectory performance, in some control scenarios. Specifically, less 

overshoot and shorter transient behavior was observed, when an overload occurred 

in the control regime. However, it seems that in most scenarios, by the proper tuning 

of the adaptive parameters of the RFPT controller, sufficient tracking performance 

can be achieved and the use of convergence acceleration is unnecessary, especially 

since, the process of online tuning of the Wegstein parameter through difference 

estimation is challenging. This is due to the implementation of fixed-point iteration 

on the second-order derivatives of the generalized coordinates, which are already 

significantly influenced by estimation noise. 

Future investigations can be made for other implementations of FPI control method. 
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