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Abstract: The paper is situated within the research domain of modeling Identifiable Virtual
Patient (IVP) models for subsequent control design using Linear Matrix Inequalities (LMIs).
In terms of the modeling methodology employed, the study also aligns with the research
domain of the TP (Tensor Product) model transformation. The proposed method has two
attributes that are important in automated insulin delivery. The effect of insulin is nonlinear.
The glucose dynamics are different from patient to patient, and can also change between days
and during the day. Thus, it is important to represent the uncertainty in the parameters of the
model in controller design. The central research question addressed in this paper is twofold:
first, whether and how alternative state-space TP model-type polytopic representations of the
Quasi Linear Parameter Varying (QLPV) state-space model of the IVP model can be derived;
and second, what types of convex hulls, defined by the vertices of these TP model-type
polytopic models, can be generated using TP model transformation techniques in both cases.
The motivation behind this manipulation stems from the fact that the effectiveness of the
subsequent Linear Matrix Inequality-based control design optimization is highly dependent
on the shape and the number of the vertices of the convex hull. Therefore, - as an answer
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to the research question - the paper applies the most up-to-date variant of the TP model
transformation in combination with the recently published polytopic model transition method
to derive the polytopic representation with a minimal number of vertices and showcases how
to manipulate the convex hull. As a result, the paper derives both tight and loose convex
hulls and defines the transition between these two leading to a series of convex hulls to
support further control design optimization. Additionally, the paper details all the steps of
the numerical implementation.

Keywords: Diabetes mellitus, T1DM model, T2DM model, Identifiable Virtual Patient (IVP),
qLPV model, polytopic model, TP model transformation, TP model transition

1 Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder associated with the hormone
insulin. Type 1 DM (T1DM) is characterized by a complete deficiency of insulin,
resulting from the autoimmune destruction of insulin-producing β -cells within the
pancreatic islets of Langerhans. Insulin plays a critical role in regulating various
metabolic pathways [1, 2].

In the context of T1DM modeling and control, a crucial consideration is determining
the optimal balance between robustness and personalization. Robustness is essential
to develop generalized models and controllers that can accommodate a larger patient
population under uniform treatment options (e.g., insulin pumps). Typically, these
devices are calibrated to manage ’average patients’ (e.g., well-trained, middle-aged
adults), particularly when such devices are designed for widespread application [3].

Personalization is critical to ensure that each patient receives the most effective
therapy tailored to their individual needs. Personalization can be achieved
during usage, as modern devices possess adaptive capabilities — enabling limited
adjustments to meet the patient’s evolving requirements over time [4].

To achieve both robust and personalized therapy, the quasi Linear Parameter
Varying (qLPV) state-space modeling and control frameworks [5] are employed
in the related literature. These frameworks allow us to address the challenges
encountered in T1DM treatment, such as the inherent nonlinearity of physiological
processes, patient-specific variations over time, and periodic signals related to food
intake, insulin administration, and endogenous insulin secretion. Furthermore,
certain internal physiological processes are not directly observable, necessitating
the integration of specific state observers within the model. Managing intra-
and inter-patient variability is also challenging due to potential fluctuations in the
model’s variable parameters [6–8] .

1.1 Goal of the paper

The overarching goal of this paper is to investigate how TP model transformation
techniques can be utilized to derive various alternative TP model-type polytopic
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representations of the IVP model, enabling the direct execution of subsequent
LMI-based controller design. This foundational work will support future studies
aimed at applying LMI control strategies to develop effective IVP control laws. By
developing different IVP model representations (with different convex hulls) helps
us to select the most appropriate one for a more optimized LMI-based controller
design, thus, better performance can be achieved to meet various requirements,
directly impacting patient treatment outcomes, reducing treatment costs, and
optimizing the administered insulin dosage.

1.2 Research questions of the paper

The research question of this paper is how to derive alternative TP model-type
polytopic representations of the state-space qLPV model of the Extended IVP model
using TP model transformation techniques, while ensuring that these representations
hold the following characteristics:

• Minimal form

The resulting TP model-type polytopic model is designed to have a minimal
number of vertices.

• Series of convex hulls

The resulting TP model type-polytopic models have different vertices
that define distinct convex hulls. Moreover, these convex hulls serve
as intermediaries, effectively representing a continuous transition between
distinct convex hull configurations.This step helps the selection of the optimal
convex hull during subsequent control design.

1.3 Motivation

The motivation behind the aforementioned goal stems from the fact that it has
been demonstrated that the effectiveness of Linear Matrix Inequality (LMI) design
applied to TP model type-polytopic representations, and the resulting control
performance, are highly dependent on the following characteristics of the TP model
type-polytopic models [9, 10].

• Number of vertices

The efficiency of LMI solvers is highly sensitive to the number of LMIs that
must be solved simultaneously. The number of LMIs increases with the
number of vertices, and the computational load on the LMI solvers grows
exponentially as the number of LMIs increases. Furthermore, the likelihood
of finding the optimal solution diminishes with a higher number of vertices.
For further information see [9, 10].

• Shape of the convex hull

It has recently been demonstrated that different convex hulls defined by the
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vertices can lead to varying control performances. Some convex hulls result in
improved control performance, while in other cases, the selected vertices may
render an LMI-based design infeasible. As no direct relationship between the
model, convex hull, and LMI has been established in the literature, one may
systematically derive a set of convex hulls and subsequently select the one that
yields the optimal solution. However, based on experimental tests, a general
rule of thumb suggests that the tighter the convex hull, the better the solution
tends to be. For further information see [9, 10].

Consequently, the primary motivation behind deriving a set of distinct convex hulls
for the polytopic model is to identify the minimal number of vertices that enhance
LMI design, while exploring different convex hull shapes to optimize the results of
the subsequent LMI design.

In the present case of the IPV design it means that if we derive a set of TP
model-type polytopic model then we can execute the LMI design on all.

1.4 Novel contribution of the paper

The novelty of this paper lies in its application of the most recent variant of the TP
model transformation - published in 2023 [10] - in combination with the newly
introduced interpolation technique for polytopic models, also published in 2024
[11]. This application is presented as a framework for similar cases and serves
as a case study to demonstrate the effectiveness of combining these methods.

In this paper, this framework is applied to the Extended Identifiable Virtual Patient
Model to derive its TP model-type polytopic representation and to demonstrate how
an infinite number of distinct convex hulls can be easily generated in a systematic
way.

A case study utilizing the combination of these two recent methods has not been
previously published. Furthermore, such polytopic representations have not yet
been derived for the Extended Identifiable Virtual Patient Model.

1.5 Structure of the paper

The paper begins by presenting the notation and key concepts employed throughout,
to facilitate comprehension of subsequent sections. Following this, the qLPV model
of the Identifiable Virtual Patient (IVP) Model is derived in Section III. Section
IV introduces the essential steps of the TP model transformation, along with the
TP model-type polytopic model interpolation technique. Section V applies the
theory introduced in Section IV to the IVP and details the steps of the numerical
execution of the TP model transformation and interpolation method. The results are
demonstrated in Figures. Section VI concludes the paper.
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2 Notation and basic concepts

This section defines the notation and fundamental concepts employed in the
following. Moreover, it expounds on the characters and letters that hold specific
roles within the context of the TP model transformation.

• a ∈ R,a ∈ RI ,A ∈ RI1×I2 ,A ∈ RIN
denote, scalars, vectors, matrices and

tensors, respectively, where the notation RIN
is equivalent to RI1×I2×...×IN .

• 1 denotes a vector whose all elements are 1.

• I denotes the identity matrix.

• g, i, j,n, . . . are indices with the upper bounds G, I,J,N, . . . e.g. i = 1,2, . . . , I
and in = 1,2, . . . , In and so on.

• [·]index addresses elements, e.g. [A ]i1,i2,...iN = ai1,i2,...iN of A ∈ RIN
.

[A ]i1,i2,...iN ∈ RJM
is a tensor element of tensor A ∈ RIN×JM

.

• ω ⊂ R defines an interval as ω =
[
ωmin,ωmax

]
.

• Ω ⊂ RN is a hyperspace as Ω = ω1 ×ω2 × . . .×ωN .

• p ∈ R denotes a parameter such that p ∈ ω .

• p ∈ RN denotes parameter vector such that p =
[

p1 p2 . . . pN
]
∈ Ω.

• S(p) denotes a continuous bounded matrix function of parameter p(t) and the
output of the function is characterized as S(p) ∈ RJ1×J2 .

• w(p) ∈ R denotes the weighting functions, and holds ∀p : w(p) ∈ [0,1].

• w(p) ∈ RI termed as the weighting vector and contains the weighting
functions as w(p) =

[
w1(p) w2(p) . . . wI(p)

]
. Further, it guarantees

Convexity condition meaning that

∀p : w(p)1 = 1. (1)

• d ∈ R denotes the location of one point in ω .

• d ∈RG denotes the grid vector that defines the location of G number of points
as d =

[
d1 d2 . . . dG

]
, where dg < dg+1 for all g, and the grid covers

ω such that d1 = ωmin and dG = ωmax.

• D ∈ RGN×N denotes the grid tensor constructed from the grid vectors dn =[
dn,1 dn,2 . . . dn,G

]
. It defines a rectangular grid that covers Ω. The

vector elements [D ]g1,g2...gN of D define the coordinates of the grid as:

[D ]g1,g2...gN =
[

d1,g1 d2,g2 . . . dN,gN

]
. (2)

• i(p) ∈ RG denotes the identity function system over ω , see Figure 1. Vector
i(p) =

[
i1(p) i2(p) . . . iG(p)

]
contains piece-wise linear triangular
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shaped functions ig(p) defined by the grid vector d as:

i(p) = λ [I]g +(1−λ )[I]g+1; λ =
dg+1 − p
dg+1 −dg

, (3)

where dg ≤ p ≤ dg+1.

Figure 1
Triangular shaped identity weighting function system

• U denotes an orthonormal matrix;

• W denotes the matrix that satisfies:

1 = W1 and ∀i, j : 0 ≤ [W]i, j. (4)

• UW denotes the Convex Transformations that transform the orthonormal
matrix U to W. Such transformations in the TP model transformation
(also known as TS Fuzzy model transformation) related literature are Sum
Normalisation - Non-Negativenes (SNNN), Normalised (NO), Close to
Normalised (CNO), Relaxed Normalised (RNO), Inverse Normalised (INO),
Inverse Relaxed Normalised (IRNO) transformations [9, 12–14]. These
transformations guarantee further characteristics of W that are advantageous
in polytopic model-based design as discussed in the Introduction.

• (·)+ denotes pseudo-inverse of a matrix, i.e. A+ is the pseudo inverse of
matrix A.

•
N
⊠

n=1
denotes the tensor product such that F = S

N
⊠

n=1
Vn, where F ∈ RGN×JM

, S ∈ RIN×JM
and V ∈ RGn×In . It is equivalent to

[F ]g1,g2,...gN =
I1

∑
i1=1

. . .
IN

∑
iN=1

N

∏
n=1

[V]gn,in [S ]i1,i2,...iN , (5)

where [S ]i1,i2,...iN ∈ RJM
.

• CHOVD refers to Compact Higher Order Singular Value Decomposition, also
known as truncated HOSVD in the literature [15]. It refers to HOSVD of
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a given tensor, where the zero singular values and the associated singular
vectors are discarded.

3 Virtual Patient Model

3.1 Extended Identifiable Virtual Patient Model

The extended Identifiable Virtual Patient Model (IVP) [16] is a compromise between
the well-known minimal model of Bergman [17] and the Hovorka model on
structural complexity and precision in terms of the description of the glucose-insulin
household. The model equations are the following:

Ġ(t) =−(GEZI + IEFF(t)) ·G(t)+EGP+RA(t), (6)

İEFF(t) =−k2 · IEFF(t)+ k2 ·SI · IP(t), (7)

İP(t) =− 1
τ2

IP(t)+
1
τ2

ISC(t), (8)

İSC(t) =− 1
τ1

ISC(t)+
1

τ1CI
u(t), (9)

where G(t) mg/dl is the blood glucose level at the instant of time t, IEFF(t)
min−1 is the effect of insulin on glucose, ISC(t) and IP(t) µU/mL represent the
subcutaneous and plasma insulin concentrations, respectively. Instantaneous flow
of injected insulin u(t) µU/min serves as a control input. Parameters of the insulin
submodel: τ1 min and τ2 min are time constants of the subcutaneous and plasma
insulin compartments, k2 min−1 is the kinetic rate of insulin action, CI mL/min is
insulin clearance and SI mL/µU/min is the insulin sensitivity. Endogenous glucose
production EGP mg/dl/min is modeled by a constant term and GEZI is the glucose
effectiveness at the zero insulin level.

To have a realistic measured output of the model (6)-(9) a CGM error submodel can
be used [18]. The model takes into account the delay [19] – since the measurement
site is the interstitium –, sensor drift, additive sensor noise, and calibration error.
To limit the number of factors that affect the CHO estimation, the sensor drift
has been omitted. Sensor delay was modeled as an additional interstitial glucose
compartment IG, while additive noise was an autoregressive process of order two
with a white noise term w ∼ N (0, σ2) as follows:

˙IG(t) =− 1
τIG

IG(t)+
1

τIG
G(t), (10)

v(t) = α1v(t −Ts)+α2v(t −2Ts)+w(t), (11)

CGM(t) = IG(t)+ v(t), (12)

where τIG is a time constant characterizing the transfer between the blood and the
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interstitial glucose, while α1 and α2 define the autoregressive process.

CHO intake submodel – that is not included into the model directly – is summarized
by RA(t) mg/dl/min in the model described by the following equation:

RA(t) =
m

∑
i

Ag ·di

VG · τ2
Di

ti · e
− ti

τDi , (13)

where VG dl is the volume of glucose distribution of the patient and Ag − is
the constant utilization of carbohydrate. A given meal is the disturbance signal
di g (carbohydrate content of the meal). The CHO absorption submodel is
encapsulated in the term RA(t) mg/dl/min, which is the sum of the impulse
responses characterized by two first-order processes in series with τD min time
constants.

The values of the constant parameters are the following ones: CI = 1.11 · 103

mL/min, k2 = 2.85 ·10−2 1/min, Vg = 190 dL, τ1 = 52.71 min, τ2 = 45.41 min.

In this investigation based on our previous findings [3], the most determining
parameters from the model variability point of view are EGP, GEZI, and SI and
thus will be applied as varying parameters. The lower and upper bounds of them are
EGP = [0.062,2.32], GEZI = [5 ·10−4,6 ·10−3], and SI = [2.35 ·10−5,2.11 ·10−3].

3.2 qLPV state-space model representation

Linear parameter varying (LPV) modeling technique is an approach to handling the
nonlinearities of the given system. If one of the parameters is not a free signal such
as an inner state variable, then it is called quasi-LPV or qLPV. The continuous time
qLPV state-space representation (qLPV-SS) is defined as follows [20]:[

ẋ(t)
y(t)

]
= S(p(t))

[
x(t)
u(t)

]
. (14)

Here vector x ∈ Rs represents the state vector, y ∈ Ro represents the output vector
and u ∈ Ri represents the input vector. Matrix S(p(t)) ∈ R(s+o)×(s+i) represents the
parameter-dependent system matrix having partitions as:

S(p(t)) =
[

A(p(t))s×s B(p(t))s×i
C(p(t))o×s D(p(t))o×i

]
. (15)

The extended IVP model (6)-(10) can be transformed into a qLPV-SS representation
form. From the model equation (6) the EGP as a varying parameter can be attached
to the G(t) by EGP·G(t)

G(t) .

Selecting p(t) = [G(t),EGP(t),GEZI(t),SI(t)]T as scheduling parameters leads to
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the following qLPV representation:

A(p(t)) =


a1,1 −p1(t) 0 0
0 −k2 k2 p4(t) 0
0 0 − 1

τ2
1
τ2

0 0 0 − 1
τ1

 , (16)

a1,1 =−p3(t)+
p2(t)
p1(t)

, (17)

B =

[
0 0 0 1

τ1CI
0

1 0 0 0 0

]T

, (18)

C =
[
1 0 0 0 0

]
, (19)

D =
[
0 0

]
. (20)

4 TP model-type Polytopic representation and convex
hull manipulation by TP model transformation

The TP model transformation (also known as TS Fuzzy model transformation) is
developed to transform given models to TP model type polytopic representation
with various beneficial characteristics to enhance further design outcomes. The
TP model-type polytopic model and TP model transformation were introduced in
publications [9–11, 13, 21–27] and will be briefly summarized here within the
context of this paper . The key properties of the TP model transformation:

• Property 1. It provides the minimal complexity, such as the minimal number
of vertices in the polytopic model, or provides an approximation accuracy vs
complexity trade-off [27–35].

• Property 2. It can vary the convex hull of the resulting polytopic model
[9–11, 13, 21–23, 36–38].

4.1 TP model transformation

In the case of state-space modeling and controller design the main objective of the
TP model transformation is to transform a given qLPV model[

ẋ(t)
y(t)

]
= S(p(t))

[
x(t)
u(t)

]
(21)
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to a TP model-type polytopic (polytopic for short) representation[
ẋ(t)
y(t)

]
= S

N
⊠

n=1
wn(pn(t))

[
x(t)
u(t)

]
. (22)

Method 1. TP model transformation

Step 1. Define discretization grid vector dn for each dimension and the
discretization tensor D ∈ RGN×B.

Step 2. Discretise the given system matrix S(p(t)) over D :

[F ]g1,g2,...gM = S([D ]g1,g2,...gM ). (23)

Step 3. Extract the minimal number of weighting functions - determined by the
columns of matrix Un - via CHOSVD as

F = T
N
⊠

n=1
Un. (24)

Here, CHOSVD stands for Compact Higher-Order Singular Value Decomposition,
indicating that all zero singular values are discarded. Consequently, the number
of columns in Un corresponds to the number of non-zero singular values for each
dimension, effectively representing the rank along each dimension. Since each
column numerically reconstructs the weighting functions (as will be introduced in
Step 5), the number of weighting functions is minimized. This remains true even
if the convex transformation in the next step adds one more column to Un, as it
only introduces an additional column when necessary. For a more comprehensive
understanding, please refer to [13].

Step 4. Define convex hull via Convex Transformation UnWn that leads to

F = S
N
⊠

n=1
Wn, where S = F

N
⊠

n=1
W+

n . (25)

Step 5. Define the piece-wise linear weighting functions as:

wn(pn(t)) = in(p(t))Wn (26)

that leads to

Ŝ(p(t)) = S
N
⊠

n=1
wn(pn(t)). (27)

Remark 1. Note that, when the grid density approaches infinity as ∀n : Gn → ∞ then
Ŝ(p(t))→ S(p(t)).

To facilitate the utilization of further LMI design tools one may transform the
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resulting tensor product form to

S(p(t)) =
L

∑
l

w′
l(p(t))Sl , (28)

where l is the linear index equivalent of array index i1, i2, . . . iN as

l = ordering(i1, i2, . . . iN), where L =
N

∏
n

In, (29)

and, hence the vertex system matrices and the weighting functions are:

Sl = [S ]i1,i2...iN and w′
l(p) =

N

∏
n=1

wn,in(pn(t)). (30)

Remark 2. Note that functions w′
n(p) hold Convexity condition, see Equ. (1).

4.2 Interpolation of the polytopic models

In order to determine the convex hull between the tight and the loose convex hulls
we can apply the interpolation technique proposed in [11]. Consider two polytopic
representations of S(p(t)) derived by TP model transformation executed over the
same grid. One is with a tight convex hull. In the present case let the tight convex
hull be a CNO type:

S(p(t)) = S CNO
N
⊠

n=1
wCNO

n (pn), (31)

where the piece-wise weighting functions are determined as

wCNO
n (pn(t)) = in(p(t))WCNO

n (32)

in Step 5 of the TP model transformation. Let the other polytopic representation
have a loose convex hull. In the present case let the loose convex hull be SNNN
type:

S(p(t)) = S SNNN
N
⊠

n=1
wSNNN

n p(n), (33)

where the piece-wise weighting functions are determined as

wSNNN
n (pn(t)) = in(p(t))WSNNN

n (34)

in Step 5 of the TP model transformation.

Let us set λ ∈ [0,1] the interpolation parameter. The goal of the interpolation is to
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derive

S(p(t)) = S λ
N
⊠

n=1
wλ

n (pn), (35)

where

∀n : wλ
n (p) = λwCNO

n (p)+(1−λ )wSNNN
n p(n). (36)

Method 2. Interpolation between polytopic models

• Step 1: Determine the interpolated weighting matrices

Let

∀n : Wλ
n = λWCNO

n +(1−λ )WSNNN
n . (37)

• Determination of the vertices

The core tensor, which stores the vertices, is calculated by the pseudo inverse
as:

S λ = F
N
⊠

n=1

(
Wλ

n

)+
. (38)

5 Polytopic representation of the Diabetes Mellitus
model

5.1 Tight and loose polytopic models

Let us execute the TP model transformation with CNO-type convex transformation
on the model given in Equ. (16). Based on the above model parameters Ω =
[70,400]× [0.062,2.32]× [0.0005,0.006]× [0.0000235,0.00211]. Since p1(t) is
in a nonlinear term of the system matrix (see Eq. (17)), let the grid density be
defined as G1 = 10000. However, p2(t), p3(t), and p4(t) have a linear effect on the
elements of the system matrix, which means the weighting functions to be derived
will be linear in those dimensions. Therefore, it is enough to set G2 = G3 = G4 = 3.
When we execute the TP model transformation it turns out that the rank of the
discretized tensor F ∈ R10000×3×3×3×6×6 is 3 on the first dimension and 2 on the
2,3,4-th dimensions. Therefore, the resulting TP model takes the form of

S(p(t)) = S
4
⊠

n=1
wn(pn(t)), (39)

where w1(p1(t)) ∈R3, w2(p2(t)) ∈R2, w3(p3(t)) ∈R2 and w4(p4(t)) ∈R2. Thus,
the number of vertices Si1,i2,i3,i4 ∈ R6×6 stored in tensor S ∈ R3×2×2×2×2×6×6
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Figure 2
CNO type weighting functions

Figure 3
SNNN type weighting functions

is 24 = 3 × 2 × 2 × 2. Since CNO type weighting functions are derived, the
resulting convex hull of the vertices is a tight hull [9, 10, 13]. The weighting
functions are depicted in Figure 2. The relative L2 norm approximation error over
the grid is 3.0237× 10−10 which is caused by the numerical computation of the
HOSVD. The L2 norm relative error caused by the piece-vise approximation of the
weighting functions is around 5× 10−9. Thus the resulting TP model is exact in
numerical sense. If we execute the SNNN convex transformation then we arrive
at weighting functions depicted in Figure 3 that yields a loose convex hull. The
interpolated weighting functions are depicted in Figure 4. Since the convex hull
is 24 dimensional it is not possible to illustrate on a figure. However, Figure 5
illustrates how the elements of the vertices change and gradually converge to a tight
convex hull. Since these elements are in a very different range, Figure 5 illustrates
only a few elements. It shows how the [S1,1]1,2, [S2,1]1,2 and [S3,1]1,2 element are
converging. All other elements of the vertices converge in a similar way from a
loose convex hull to a tight hull.

6 Conclusions

The paper combines the TP model transformation and the convex hull interpolation
developed for TP model-type polytopic models. Then the paper applied this
combination to demonstrate how to derive systematically an infinite number of
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Figure 4
Interpolated weighting functions

Figure 5
Convergence of [S1,1]1,2, [S2,1]1,2 and [S3,1]1,2 vertex elements

TP model-type polytopic models with different convex hulls. The core message
of this paper is that the TP model transformation and transition can be effectively
applied to the IPV model. The study demonstrates that the IPV model can be
precisely represented using a 3× 2× 2× 2 weighting function system, resulting in
an associated convex hull with 24 vertices—representing the minimum complexity.
The paper further reveals that the SNNN-type TP model defines a loose convex
hull, whereas the CNO-type TP model defines a tight convex hull. Additionally, it
is shown that interpolating the weighting functions results in a smooth transition
between the tight and loose convex hulls in the case of the IPV model. As
future work, we intend to explore how these different TP model-type polytopic
representations can be leveraged to select an optimal LMI structure for controller
design.
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