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Abstract: Understanding soil moisture is crucial in various aspects of daily life and 
scientific pursuits. Among these, knowledge about water stress conditions holds particular 
significance for both agriculture and soil conservation. The objective of this research is to 
explore the application of satellite imagery in the cartography and surveillance of moisture 
levels within an agricultural region. Soil moisture content was assessed using the optical 
trapezoid model (OPTRAM). Developed by Sadeghi et al. (2015), the OPtical TRApezoidal 
model (OPTRAM) was designed to gauge soil water content (SWC) by assuming a linear 
correlation between soil moisture content and shortwave transformed reflectance (STR). 
The parameters essential for calculating moisture content were identified by scrutinizing 
pixel distribution in the STR-NDVI (Normalized Difference Vegetation Index) space.  
The examination period spanned from April to October 2021. The models were employed to 
compute the spatial fluctuation of soil moisture and its deviation for three satellite images 
during the summer of 2021.  
The study site was located in Hungary's Bács-Kiskun county, encompassing agricultural 
fields with a total expanse of 5500 km2. The study region exhibited variability in terms of 
soil composition and topography. Meteorological parameters recorded at 19 stations 
within a drought monitoring network, along with soil moisture measurements at different 
depths, were also taken into account. To validate the data obtained from the soil moisture 
sensor and model, soil samples were collected at a depth of 10 cm for laboratory moisture 
assessments. The present condition can be depicted through the analysis of a spatial image, 
while time series analyses enable continuous monitoring of soil moisture. The eCognition 
software environment, employing the object-based (OBIA) approach, was used to process 
satellite data. Statistical methods were utilized to establish correlations between the 
datasets measured at the site and estimated from satellite images. 

Keywords: satellite images; Sentinel2; image processing; soil moisture; OPTRAM model; 
eCognition 

mailto:wojtaszek.malgorzata@amk.uni-obuda.hu
mailto:vas.laszlo@aduvizig.hu


M. Verőné Wojtaszek et al,  Mapping of Soil Moisture Variability,  
 Using the Sentinel-2 Data Optical-Trapezoid Approach  

 – 64 – 

1 Introduction 

Up-to-date data of soil moisture are crucial in various aspects of daily life and 
scientific endeavors. Notably, information about water stress conditions holds 
particular significance for agriculture and soil conservation. Water stands as a 
pivotal factor in agriculture, playing an essential role throughout the entire crop 
growth cycle. It is indispensable for seed germination, acts as a carrier for the 
distribution of mineral nutrients, and is closely linked to biomass production [1]. 
Extreme weather events can pose challenges, even leading to the complete 
destruction of plants. Excessively high soil moisture hinders access to agricultural 
areas and poses harm to crops, while insufficient soil moisture also damages 
crops, necessitating irrigation. 

Weather factors, especially precipitation and air temperature, significantly 
influence agricultural outcomes. Crops are susceptible to the detrimental impacts 
of drought, particularly during periods of exceptionally low precipitation or 
extremely high temperatures. Monitoring soil moisture becomes instrumental in 
tracking drought conditions. Conventional approaches, dependent on data 
gathered from handheld or field sensors, as well as soil sampling and laboratory 
analysis, offer point-specific information, struggling to effectively capture the 
temporal and spatial fluctuations in soil moisture within agricultural fields. These 
methods are characterized by being time-consuming, labor-intensive, and 
challenging to automate due to the heterogeneous nature of soil and crop cover. 
Providing point-specific information, these approaches offer limited insights into 
the field status and prove challenging to scale up to plant, field, or regional levels 
[2] [3], making them unsuitable for effective monitoring. 

Due to increasingly better spatial, spectral, and temporal resolution of satellite 
systems, continuous monitoring of Earth becomes achievable. Currently available 
remote sensing technologies can be applied to map the water balance of plants.  
A typical example of this is measuring the surface temperature in the thermal 
infrared spectrum or using microwave radiation to assess soil moisture. 
Furthermore, the use of spectral vegetation indices allows the study of how the 
canopy reflects environmental changes. Based on previous studies, it can be stated 
that soil reflectance in the optical range [4] [5], thermal radiation [6] [7], and 
microwave backscatter [8] [9] show a high correlation with soil moisture content. 
Surveying methods based on optical, thermal, and microwave remote sensing of 
soil moisture are available in the literature. Numerous studies rely on the 
calculation and analysis of spectral indices, revealing a clear connection between 
reflectance values and canopy changes induced by water stress. 

The objective of this research was to explore the application of remote sensing 
data for mapping soil moisture variability within an agricultural region.  
The Optical Trapezoid Model (OPTRAM) was used to calculate the spatial 
fluctuations in soil moisture and its variation across three satellite images from the 
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summer of 2021. The study period spanned from April to October 2021. 
Meteorological data from 19 stations within a drought monitoring network, along 
with soil moisture measurements at various depths, were also analyzed. To 
validate the sensor- and model-based soil moisture data, soil samples were 
collected at a depth of 10 cm for laboratory moisture assessment. 

2 Study Area 

Moisture retrievals for the study site were derived from a location situated in the 
southern region of Hungary (Figure 1), specifically within Bács-Kiskun county on 
the Great Hungarian Plain. According to the topographic map, the highest point in 
the area is at an altitude of 174 meters above sea level (m.a.s.l.), while the lowest 
point is at 84 m.a.s.l [10]. From a topographical perspective, the study area can be 
classified into two parts. The region between the Main Canal of the Danube 
Valley and the Danube itself constitutes a floodplain, while the eastern part is a 
lowland plain. The study area exhibits a variety of soil types, with more than 10 
types identified. Predominantly, different chernozemic soil types (HSCS: 
Hungarian Soil Classification System) characterize the largest areas, featuring an 
organic carbon content ranging from 1.00% to 2.99% [11]. Meadow soils and 
saline soils are common in the valleys, primarily utilized as arable land due to 
their favorable agricultural characteristics. 

The soil moisture in the floodplain section of the study area is influenced by both 
subsurface water and precipitation. In contrast, on the lowland plain section, it is 
solely dependent on precipitation. 

The land cover is dominated by agricultural lands, its share is 51%. The second 
largest land cover category is forest, while the third category is pasture. Forests 
and pastures can be found primarily on the lowland plain. 
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Figure 1 

Location of the area under study in Hungary, visualization of topographic features (outlined with red 
line, topography inside) 

3 Method 

The prevailing methodology for Remote Sensing (RS) of soil moisture often 
employs widely used models like the "trapezoid" or "triangle," which integrate 
both optical and thermal data. One such model, known as the Thermal-Optical 
Trapezoid Model (TOTRAM), utilizes the pixel distribution within the feature 
space created by land surface temperature values (thermal band) and vegetation 
index values (VIS, IR bands) [12] [13]. TOTRAM has demonstrated efficacy in 
estimating surface soil moisture, and various modified versions have adapted to 
advancements in optical sensor technologies. With the progression of optical 
sensors in the spectrum range, models now integrate additional and superior data. 
Optical remotes sensing based data, including indices derived from the Red-Near-
infrared (R-NIR) triangular space, such as the Perpendicular Drought Index (PDI) 
[14], Distance Drought Index (DDI) [15], and the Triangle Soil Moisture Index, 
have become prominent. In such studies, the short-wave infrared (SWIR) range is 
gaining prominence, as evidenced by the development of indices parameterized by 
the SWIR (instead of thermal) and near-infrared (NIR) trapezoidal space. 
Examples include the Shortwave Perpendicular Drought Index (SPDI) [16] and 
the Modified Shortwave Infrared Perpendicular Drought Index (MSPDI) [17]. 
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As a result of the research by Sadeghi et al. [18], a new model, the Optical 
Trapezoidal Model (OPTRAM), has been introduced. This model is based on the 
correlation between soil moisture and shortwave infrared (SWIR) transformed 
reflectance, with the authors assuming a linear relationship between the two 
variables. The theoretical foundation and application of OPTRAM, using Sentinel-
2 and Landsat OLI satellite imagery, were presented in 2017. Since then, the 
method has been applied in various research projects [19] [20]. 

In contrast to the traditional trapezoid model, TOTRAM, which relies on pixel 
distribution within the feature space of surface temperature and vegetation index 
(LST-VI) and assumes an inverse linear relationship between surface soil moisture 
and LST (Figure 2), the Optical Trapezoid Model (OPTRAM) was specifically 
developed for Soil Water Content (SWC) estimation using optical satellite data. 
OPTRAM is based on the linear physical relationship between soil moisture and 
Shortwave Infrared Transformed Reflectance (STR) [18]. 

 
Figure 2 

Illustrating the theoretical background of the Thermal-Optical Trapezoid Model (TOTRAM) and the 
Optical Trapezoid Model (OPTRAM) [16] 

OPTRAM necessitates parameterization at a specific location, determined by the 
pixel distribution within the STR-NDVI space (Figure 2). In this context, R refers 
to reflectance, STR refers to Shortwave Infrared Transformed Reflectance and is 
defined as follows: 

 
  (1) 

The parameters used in the calculation can be derived for a particular location by 
extracting information from the dry and wet edges of the optical trapezoid 
illustrated in Figure 2. 
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During the research and OPTRAM model run, the equation coefficients (Figure 2) 
were derived from the pixel distribution within the STR-NDVI space. The model 
was then executed individually for each available image, and an integrated 
trapezoid was defined to encompass the pixel distribution of all selected images. 
This integrated trapezoid was used to assess the overall parameterization. During 
the work dry (id and sd) and wet (iw and sw) edges were determined by visual 
inspection of the STR-NDVI spaces so that the trapezoids surrounded the majority 
of the pixels. From id and sd (dry edge parameters) and iw and sw (wet edge 
parameters), the normalized moisture content (W) was estimated for each pixel 
based on the equations summarized in the figure above (Figure 2). 

4 Data Acquisition and Analysis 

4.1 Field Data Acquisition 

In this study, meteorological and soil moisture data were obtained from weather 
stations, supplemented by soil samples collected for laboratory analysis. The study 
area comprises 19 stations, with two in operation since 2018, sixteen since 2019, 
and one since 2021. These stations are strategically located within 2.5x2.5 m 
fenced areas on cultivated land, predominantly ploughland, occasionally 
extending to meadows or pastures. Within each fenced area, a central column 
supports various instruments, including the weighting rain gauge (OTT Pluvio 2), 
soil moisture sensors (Figure 3), temperature sensors (Decagon 5 TM), a solar 
panel, a buffer accumulator, and a combined air temperature and humidity sensor 
(ADCON TR1). The weather stations primarily measure temperature, humidity, 
wind speed and direction, rainfall, and air pressure, totaling nine parameters. Data 
are collected hourly and transmitted to the data acquisition server every 3-6 hours. 
Soil moisture and soil temperature are measured at depths of 10 cm, 20 cm, 30 
cm, 45 cm, 60 cm and 75 cm. 

The soil sensors are highly sensitive electromagnetic induction measurement 
devices that gauge near-surface electromagnetic conductivity. The 5TM 
determines volumetric water content (VWC) by assessing the dielectric constant 
of the soil using capacitance/frequency domain technology. The sensor emits a 70 
MHz oscillating wave to the sensor prongs, which charges based on the dielectric 
of the material. The stored charge is proportional to soil dielectric and soil 
volumetric water content (VWC). The 5TM microprocessor measures the charge 
and outputs a value of dielectric permittivity from the sensor. Soil moisture data 
from a network of drought monitoring stations in the study area was used for 
parameterization. 
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Figure 3 

Example of the installed soil sensors 

To validate the data obtained from the soil moisture sensor, soil samples were 
collected at a depth of 10 cm and subsequently processed in the laboratory.  
The relationship between the results obtained was investigated through correlation 
and regression analysis, revealing a correlation coefficient (R2) of 0.85 between 
the sensor readings and the measured soil moisture values (Figure 4, Table 1). 

 
Figure 4 

Soil moisture sensor calibration 

 

 



M. Verőné Wojtaszek et al,  Mapping of Soil Moisture Variability,  
 Using the Sentinel-2 Data Optical-Trapezoid Approach  

 – 70 – 

Table 1 
Soil moisture calibration coefficients 

Station Slope (m) Axis cross-section (t) 
Ósükösd 1.33 1.10 
Fajsz 0.58 13.78 
Kalocsa 1.58 -11.00 
Homokmégy 1.28 -3.00 

4.2 Satellite Images and Precipitation Data 

In this study, we utilized multispectral imagery obtained from the European Space 
Agency's Sentinel-2 satellite, acquired through the ESA Sentinel Scientific Data 
Hub. The Sentinel-2 satellite offers high spatial resolution ranging from 10 to 60 
meters, encompassing 13 spectral bands that span the visible (VIS), near-infrared 
(NIR), and shortwave infrared (SWIR) electromagnetic frequency domains. With 
a temporal resolution of approximately 5 days, the satellite observations were 
collected during the period between April and October 2021. To ensure data 
quality, only cloud-free images were considered initially. Subsequently, following 
a preliminary interpretation, three images were selected for further processing. 
The selection process took into account meteorological factors, specifically the 
amount and intensity of precipitation, as additional criteria for refining the dataset. 

The study area and the periods of investigation were selected based on the spatial 
and temporal distribution of precipitation. In 2021, the lowest precipitation (413 
mm) occurred in Fajsz; consequently, the focal area for the analyses encompassed 
Fajsz and the surrounding drought monitoring stations (Ósükösd: 424 mm, 
Kalocsa: 472 mm, Sandy Mountain: 488 mm). The study area is delineated by a 
red rectangle in Figure 5. 

Analyses were conducted for two distinct periods, as highlighted in green in 
Figure 6. The OPTRAM model was employed to assess water conditions in the 
designated area during two contrasting weather phases: the aftermath of heavy 
rainfall in April 2021 and the dry spell in August 2021. The April period exhibits 
a notable peak in soil moisture levels, while the August period is characterized by 
relative aridity. Referencing Figure 6, the graph illustrates precipitation and soil 
moisture dynamics in the study region throughout the entire year of 2021, 
spanning from January to December. Notably, a significant rainfall event occurred 
in late May, leading to heightened soil water saturation. Despite minor 
precipitation occurrences between May and August, they had minimal impact on 
soil moisture content, resulting in its sustained low levels for approximately two 
months. 
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Figure 5 

Spatial distribution of changes in annual rainfall (2021) and Sentinel2 (RGB) image for study area 

 

 
Figure 6 

Time series (precipitation, soil moisture and calibrated soil moisture) of Fajszi station (2021) 
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4.3 Data Analysis 

We used geospatial (QGIS) and image processing software to store and manage 
data from different sources and in different formats. Raster data analysis was 
conducted using the eCognition Developer software, with image processing and 
model application performed through object-based image analysis (OBIA). Figure 
7 illustrates the workflow detailing the key steps in data analysis for mapping 
surface soil moisture with OPTRAM. The data extraction process encompasses 
several stages, including data pre-processing, multi-level image segmentation, 
feature extraction, index delimitation, and the application of the optical trapezoid 
model. 

 
Figure 7 

Diagram for satellite data analysis in soil moisture estimation by OPTRAM [1] 

The Sentinel-2 images (Level-1C) downloaded from the Copernicus database 
come with radiometric and geometric corrections, including orthorectification. 
The Level-1C data represent surface reflectance measured at the top of the 
atmosphere (TOA). Data analysis was confined to the study area, employing a 
hierarchical framework to delineate the field of interest at the super-object level. 
The analysis was conducted at the sublevel, with the unit under consideration 
being 20 m, allowing for the determination of soil moisture values at 20 m 
intervals. After multi-level segmentation, we computed the requisite 
characteristics for each study unit to facilitate model execution, including 
vegetation indices such as the normalized differential vegetation index (NDVI) 
and short-wave infrared transformed reflectance (STR). In the context of water 
stress models, the NDVI serves as a widely utilized measure. NDVI was 
computed using reflectance values in the red band (B4) and near-infrared (B8). 
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Concurrently, shortwave infrared transformed reflectance (STR) was calculated 
using reflectance values in the SWIR band (B12), following the method outlined 
by Sadeghi et al. [17] (Table 2). 

Table 2 
The specification of used satellite images (Sentinel2) 

Spectral 
resolution 

Wavelength (µm) 
Sentinel2A/B 

Spatial 
resolution (m) 

B4 (Red) 0.649 – 0.680 / 0.650 – 0.681 10 
B8 (NIR) 0.780 – 0.886 / 0.780 – 0.886 10 
B11 (SWIR) 1.568 – 1.659 / 1.563 – 1.657 20 
B12 (SWIR) 2.115 – 2.292 / 2.093 – 2.278 20 

Results and Conclusions 

In the research, we explored the feasibility of a remote sensing-based, soil 
moisture estimation model, for an area of Hungary, comprised of agricultural 
fields, with a total expanse of 5500 km2. The study spans a period characterized 
by dry and wet conditions. Following the selection of Sentinel2 bands and 
preprocessing, the OPTRAM model (Equation 4) was parameterized based on the 
pixel distribution within the STR-NDVI space. During the analysis, dry (id and sd) 
and wet (iw and sw) edges were identified through visual inspection of the STR-
NDVI spaces, ensuring that the trapezoids covered the majority of the pixels 
(Figure 8). It is worth noting that, in all cases, the STR-NDVI space consistently 
produced trapezoidal shapes, as indicated by the analysis results. The model was 
executed separately for each selected record, resulting in an estimate of the 
normalized moisture content (W), as illustrated in Figure 8. 

The OPTRAM model proves versatile for calculating the spatial distribution of 
soil moisture across extensive areas. Furthermore, employing time series analysis 
enables the mapping of the temporal variation in soil moisture over time. 

The study findings illustrate distinct trends in area drying, revealing the rate and 
progression, from an initial wetter period to a subsequent drier phase. To gain 
deeper insights, it is recommended to conduct analyses that plot deviations from 
the mean. 

The reliability of the OPTRAM model was evaluated using soil moisture data 
from 14 drought monitoring stations. The average variance between measured and 
calculated soil moisture stood at 14%. However, at two stations, the variance was 
notably high, reaching 33-34%. Upon excluding these outlier stations, the mean 
difference reduced to 10%. 

It is worth noting that the soil at these two outlier stations contains significantly 
higher levels of CaCO3 compared to other stations: 16-24 m% versus 2-13 m%. 
Despite this difference, no clear correlation emerged between lime content and 
calculation accuracy. 
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Figure 8 

Soil moisture variability within study area, determination of the parameters of the OPTRAM procedure 
for the satellite image of April 2021 

In light of the verification results, the OPTRAM model demonstrates efficacy in 
determining soil moisture. Our analysis achieved a global accuracy of 10% across 
14 verification points. 

 
Figure 9 

Deviation in soil moisture in 2021 April and (left) and 2021 August (right) 
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In order to monitor soil dehydration over time, multiple soil moisture deviation 
maps were generated (refer to Figure 9). Each pixel represented the difference in 
soil moisture from the average soil moisture. In the figure, soil moisture variance 
is represented using a color scale: areas with significantly higher-than-average 
moisture appear in blue, average conditions in yellow, and lower-than-average 
moisture in red. In April, the Kalocsai-Sárköz and Mohácsi-sziget regions exhibit 
average to above-average soil moisture levels, while the Solti Plain and the 
surrounding areas - including the Kiskunság Sand Ridge, the Bácska Loess Plain, 
and Illancs - show below-average moisture. By August, soil moisture had 
increased substantially in the eastern part of the Bácska Loess Plain, as well as in 
the Illancs region and across the entire Solti Plain. The dehydration process in the 
northern and south-eastern parts was observed over the course of a month. 
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