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Abstract:  BitTorrent is a peer-to-peer file sharing system that is open to variant
behavior at the peer level through modification of the client software. A number of
different  variants  have  been  released  and proposed.  Some  are successful  and
become widely used whereas others remain in a small minority or are not used at
all. In previous work we explored the performance of a large set of client variants
over  a  number  of  dimensions  by  applying  Axelrod’s  round-robin  pairwise
tournament approach. However, this approach does not capture the dynamics of
client change over time within pairwise tournaments. In this work we extend the
tournament approach to include a limited evolutionary step, within the pairwise
tournaments, in which peers copy their opponents strategy (client variant) if  it
outperforms their own and also spontaneously change to the opponents strategy
with a low mutation probability. We apply  a number  of  different  evolutionary
algorithms  and  compare  them with  the  previous  non-evolutionary  tournament
results. We find that in most cases cooperative (sharing) strategies outperformed
free riding strategies. These results are comparable to those previously obtained
using the round-robin approach without evolution. We selected this limited form of
evolution as a step towards understanding the full coevolutionary dynamics that
would result from evolution between a large space of client variants in a shared
population rather than just pairs of variants. We conclude with a discussion on
how such future work might proceed.
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1 Introduction
Many  popular  content  sharing  systems  are  based  on  peer-to-peer  (P2P)
technology. In  P2P systems  the  participating  users,  also  called  peers,  are  the
content  providers  and  demanders  at  the  same  time.  Among  these  systems,
BitTorrent  [1]  is  the  best  representative  example,  used by millions of  Internet
users  every  day. In  a  BitTorrent  system,  peers  can  use  different  clients,  i.e.  a
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computer program which runs the BitTorrent protocol, or a modified version of it.
Modification usually means some extension upon the original protocol in order to
provide  the  user  with  better  quality  of  service.  Apart  from  the  protocol
modifications actually deployed as clients –for example uTorrent, VuZe, Tribler,
etc.–,  many  interesting  variants  were  proposed  in  the  scientific  literature  of
BitTorrent systems, see, e.g. [2, 3, 4, 5]. Most noticeably, the paper of Rahman et
al. [6] gives a list of more than 3000 protocol variants. However, the aim of the
paper  was  to  lay  down the  methodology of  Design  Space  Analysis  (DSA) of
distributed  protocols  for  measuring  their  performance,  robustness  and
aggressiveness.

In this paper we give an extension of the DSA concept by studying the effects of
applying evolutionary approaches to the peers.

1.1 Motivation

BitTorrent  and  open  peer-to-peer  protocols  in  general  require  the  cooperative
interaction of individual peers if they are to function optimally. This is because
performance is collectively produced yet actions are individually selected. Since
each individual peer may run a different client variant (so long as it implements
the  conventions  of  the  specified  protocol)  there  is  the  possibility  for  strategic
interaction and consequent collective action problems. In the context of BitTorrent
this involves free riding (downloading data, but not uploading data) rather than
sharing data.

However, this problem is quite general in any open distributed system where the
client software that runs on each peer is not under the control of a central authority
or designer.

Consequently,  designers  of  open  peer-to-peer  protocols  (such  as  BitTorrent)
include incentive mechanisms to encourage cooperation. In its simplest form this
involves  client  software  which  punishes  other  peers  who do  not  operate  in  a
cooperative way. If a sufficient number of peers execute such a client, then free
riding can be controlled since it is not then in the individual interests of a single
peer to change to free riding behavior. 

This general problem of cooperative collective action has been addressed through
game theory and computer  simulations.  Axelrod [7]  used the pairwise Iterated
Prisoner’s Dilemma game and computer programs implementing game strategies
to  perform  a  “round-robin  tournament”  (RRT)  to  examine  which  individual
strategies did well on average against all other strategies.

For a given P2P application it is possible to view client variants as strategies in a
complex multiplayer game. In general, such games are too complex to be tractable
within  analytical  game theoretic  frameworks  without  gross  simplifications  and
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assumptions that  do not hold in the real  world.  Hence,  computer simulation is
often used.

In previous work we applied a form of Axelrod’s RRT (which we called DSA) to
the BitTorrent protocol identifying a number of interesting, counterintuitive and
high performance variants. This approach involved taking every pair of possible
client  variants  (or  strategies)  and  performing  simulation  runs  in  which  the
population was partitioned into two fixed size subpopulations running the two
different  variants.  Both  variants  then  mixed  freely  during  interactions  which
involved  downloading and uploading file  pieces  following the  BitTorrent  wire
protocol. Results for each strategy were calculated based on average performance
of  that  strategy  against  all  other  strategies  by  aggregating  all  of  the  relevant
simulation runs and calculating several statistics. 

We modify the RRT such that rather than only examining the performance of one
strategy (or client variant) against another in fixed subpopulations we allow clients
to apply evolution such that they can copy and mutate variants from others who
outperform  them.  Hence,  this  approach  allows  for  relative  sizes  of  the  two
subpopulations to change during interaction over time within a tournament.

This extension is motivated by several issues: firstly, are the original DSA results
reproduced when peers are given the ability to evolve directly? Secondly, do those
strategies  previously  identified  as  robust  against  other  strategies  evidence
evolutionary  robustness;  and  thirdly, how do different  evolutionary  algorithms
effect the outcomes?

Hence, in this work we are extending the previous DSA approach by applying
evolution  within each  tournament between only pairs of strategies.  We are  not
applying general evolution to the entire space of strategies in one large population.

This allows us to test if the original DSA results are consistent  with evolution
applied to pairs of strategies and to examine in more detail  the robustness and
performance of client variants. We consider this limited evolutionary approach as
a step towards a full  coevolutionary analysis over a large strategy space while
maintaining the ability to produce meaningful insights.

This approach applies a limited form of evolution between only pairs of solutions
(client variants) because it extends the round-robin tournament approach. Hence, it
is not possible to apply operators such as crossover since these would introduce
more than two variants into the tournament. Also, for the same reason mutation is
implemented as swapping to the other client variant rather than producing a new
client  variant.  It  would  be  of  interest  to  compare  the  results  from a  full  co-
evolutionary analysis in which all variants compete and evolve within a single
population. However, based on previous results, as discussed in section 1.2, we
expect such an approach to produce highly variable and difficult to analyse results.
This is because coevolutionary dynamics over complex strategies tend to lead to
cyclical and highly contingent dynamics such that, in the worst case,  outcomes
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may appear indistinguishable from noise. However, we discuss ways forward in
this regard in the conclusion.

1.2 Related Work

Several previous works have studied the application of incentive mechanisms to
regulate  open  distributed  systems.  This  area  of  research  has  been  termed
distributed computational mechanism design [8]. Approaches essentially fall into
two broad categories. Firstly, those that apply analytic game theoretic formulations
[9, 10, 11] and secondly, those that utilize simulation approaches [12, 13, 14, 15].
In general, analytic approaches require high levels of abstraction that limit their
applicability  to  the  design  of  realistic  deployable  protocols.  Alternatively,
simulation can be applied to highly realistic scenarios,  but  often lacks detailed
sensitively analysis due to the large parameter spaces of real protocols. Previous
work attempted to balance these two aspects via the use of simulation over a large
yet tractable space of parameters related to realistic protocol designs [6]. We build
on this latter work in the present article. Jin et al. [16] presented an evolutionary
analysis of BitTorrent P2P protocol variants by simulating the coevolution of six
existing deployed variants within a single population. Our work differs in that we
investigate on the coevolution between two variants at a time in the population.
However, by limiting evolution in this way, to within tournament pairs, we are
able  to  examine  all  coevolutionary  pairings  between  over  500  individual
protocols.  Hence,  through  this  abstraction  we  aim  to  move  towards  an
understanding  of  the  coevolutionary  dynamics  of  more  extensive  forms  of
evolution. It is notable in the work of Jin et al. that the coevolutionary dynamics
of populations composed of six protocol variants are difficult to analyze due to
what appear to be highly contingent outcomes. 

2 Background terminology

2.1 Design Space Analysis

Inspired  by  the  seminal  work  of  Axelrod  [7],  a  method  called  Design  Space
Analysis (DSA) was proposed by Rahman  et al. [6] to comprehensively model
incentives  in  distributed  protocols.  This  method  models  interactions  between
participating users playing repeated games. It combines the specification of a large
design space of protocol variants together with their analysis done by simulations.
The specification has two steps: (1) parametrization, which is the determination of
the design space's dimensions, and (2) actualization, in which the actual values of
the individual dimensions get specified. After these two steps, a solution concept
can  be  used,  where  every  element  of  the  design  space  gets  characterized  by
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different measures. DSA proposed three measures: Performance, Robustness and
Aggressiveness  – also  called  PRA quantification.  Given  a  utility  function,  the
Performance of a protocol is the average performance of the whole system under
the assumption that all peers use the same protocol variant. The utility function is
always domain specific.  In a content distribution system the utility function is
usually the average download speed of the users,  but other measures  could be
used.  The  Robustness  and  Aggressiveness  measures  are  defined  in  a system
composed  by  different  protocol  variants  and  they  indicate  the  ability  of
outperforming other protocol variants. By these three measures, the properties of
all the protocols can be characterized as a three dimensional point.

Robustness  indicates  the  ability  of  a  given  protocol  variant  to  outperform  its
opponent  variants  (averaged  over  all  tournaments).  Hence,  it  measures  how
“robust”  a  given  variant  is  to  being  dominated  (i.e.,  outperformed)  by  other
variants in a head-to-head tournament.  In this sense it  is a measure of relative
performance a detailed description of how Robustness is calculated can be found
in Section 4.3. We do not use the Aggressiveness measure in the present paper, but
its definition can be found in [6].

2.2 BitTorrent

Maybe the most important idea behind the BitTorrent P2P protocol is that the files
to be shared are divided into pieces. During the download of a particular file the
peers (or nodes) obtain the pieces from a (usually dynamically changing) set of
different  nodes,  which can consist of two types of users,  leechers  and seeders.
Leechers are peers who are currently obtaining the file, i.e. those who do not have
a copy of the entire file.  Seeders are uploading exclusively, they do have all the
pieces of the file. What makes the BitTorrent protocol highly scalable and very
efficient is that the  leechers can be uploaders as well. By default leechers follow a
rarest-first rule to obtain pieces. Due to this, leechers have good chance to have
pieces which can be traded for other pieces with other leechers,  also called its
neighbors. Each peer has upload capacity, which is divided into slots of two types:
regular unchoke and optimistic unchoke slots. Regular unchoke slots are assigned
to the subset R of neighbors which recently provided data with the highest speed.
The assignments get re-evaluated in every unchoke interval, which is usually fixed
to  10  seconds.  On  the  other  hand,  optimistic  unchoke  slots  are  assigned  to
strangers (i.e., randomly selected neighbors), which also get re-evaluated in fixed
period of time. In case an optimistically unchoked peer p is found to be faster than
any of the regularly unchoked peers, then peer p is moved to the set R, replacing
the slowest peer in R. 

The set of leechers and seeders who exchange pieces of a particular file is called a
swarm.  A collection  of  swarms are  called  a  community. Communities  usually
emerge around a central web server, called a tracker, which is an important part of
the network. A peer upon joining a swarm it requests the IP addresses of other
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peers  participating  in  this  swarm.  The  tracker  can  have  other  features  like
providing a searchable database of available content.

2.3 Parametrization

The  protocol  design  space  of  BitTorrent  can  be  spanned  over  the  following
dimensions:

Peer discovery: in order to participate and possibly interact with each other in the
same swarm, peers need to find each other.

Stranger policy: this policy is applied when a peer is interacting with a previously
unknown peer.

Selection function:  this function decides  which of the known peers  should be
selected for interaction. 

Resource allocation: defines the way a peer divides its (upload) resources among
the selected peers (which are given by the Selection function).

Using this design space a user of the BitTorrent network can enter with a client
using either  default  protocol  parameters  or  modified ones.  Modification of the
protocol can be motivated by aiming at improving the individual performance or
even to trick the system by freeriding (i.e. being only a leecher and not uploading
to any other leechers). We term a specific actualization of the parameters listed
above a strategy.

3 Evolutionary approaches
In this section we give details of the evolutionary algorithm which can be used to
find out the evolutionary behavior of a pair of unique protocols. The algorithm
starts with  N peers, and two strategies,  A and  B. Initially, half of the peers use
strategy  A and the other half use strategy  B. The  fitness of peer  i is defined as
f i=1−w+wU i , where U i is  the  utility  of  peer  i and w∈ [0,1 ] measures  the

intensity  of  selection  (strong  selection  means w=1 and  weak  selection  means
w≪1 ). By default, we measure the utility U i as the average download speed in

the current time interval, i.e., in the last R rounds.

The steps of the algorithm are the following:

Step 1  Let f i=0 for all i=1,. .. ,N .

Step 2 For  R  rounds let the peers play the 'BitTorrent game'. Within a
round, peers connect to each other (using a prescribed rule) and exchange
pieces of the file they want to download. 
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Step 3 In each  Rth round apply a selection rule on  K pairs of peers in
order to update the composition of these peers' strategies.

Step 4 If the total number of steps equals to RT then stop, otherwise go

back to Step 1.

Note  that  K represents  the  selective  pressure meaning  how much  selection  is
performed  per  round.  A  collection  of  possible  selection  rules,  which  can  be
applied in Step 3, will be discussed in Section 3.1. It is worth to note that with the
choice R=RT , K=N and w=1we get back the original robustness test used in [6].

3.1 Selection rules

Now we give a list of selection rules that will be used later in the experimental
part (Section 4). All of them use the parameters K and m, which must be set up at
the  beginning  of  the  experiment.  Note  that  in  all  rules  we  apply  a  mutation
operator, which is as follows. With probability m, peer j switches its strategy to the
opposite  one.  Technically,  this  means  that  we  generate  a  random  number  r
between 0 and 1 and if r≤m  holds, then we switch.

Tournament selection

This involves repeated tournaments between pairs of randomly selected peers as
applied in [17].

Repeat K times:

Select two peers, peer i and j uniformly at random, with replacement.

If f i≥f j holds, then

Set the strategy of peer j to be the same as the strategy of peer i.

Apply mutation on peer j.

Reset f j=0.

end if.

Death-birth updating

This  involves  selecting  a  peer  randomly and  setting  its  strategy  based  on  the
proportion of the strategies used in the entire population [18].

Repeat K times:

Select a peer j uniformly at random.
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Change  its  strategy  according  to: F A∨B /(FA+F B) , where

F A=∑q uses A
f q ,  FB=∑r uses B

f r , and F A∨B equals  to F A if  peer  j

uses strategy B, and equals to FB if peer j uses strategy A.

Apply mutation on peer j.

Reset f j=0.

Birth-death updating

This involves selection of an individual proportional to its fitness value and then
its offspring is replacing another randomly chosen peer. 

Repeat K times:

Select a peer  i proportional to its fitness. This is done in the following
way: generate a uniformly random number  r  from [0,1]; sort the peers
according to their fitness values; start summing up the fitness values of
the (sorted) peers, and denote this (partial) sum by s; normalize s; select
the peer i at which s is greater than r.

Select another peer j uniformly at random and change its strategy to the
strategy of peer i.

Apply mutation on peer j.

Reset f j=0.

Satisficing updating 

In this decentralized selection rule we assume that all the peers keep record on
their  own  fitness  value  from  the  previous  R rounds.  This  value  is f̂ i , where

i=1,...,n. The general idea of satisficing was proposed in [19]. It captures the idea
that individuals may be satisfied with an internally calculated threshold rather than
comparing themselves to others.

Repeat K times:

Select peer j uniformly at random

If f j≥ f̂ j holds,  then  peer  j keeps  its  current  strategy,  otherwise  it

switches to the opposite one.

Apply mutation on peer j.
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4 Experiments
We compare  the  strategies  tested  in  the  simulations  using  the  DSA approach
previously  discussed.  Firstly, every  strategy  (protocol  variant)  is  evaluated  for
Performance  (based  on  average  download  time)  when  it  is  in  a  population
composed  entirely  of  the  same  strategy.  This  involves  a  realistic  BitTorrent
simulation (BitTorrent game) in which each peer attempts to download a file.

Then every possible pair of strategies are pitted against each other in a tournament
by creating a population composed of half of each and executing the BitTorrent
simulation. At the end of the simulation run the best performing strategy in terms
of average performance is deemed to have "won" the tournament. A robustness
measure is calculated for each protocol by averaging wins over all tournaments
against all other protocols. Hence, a robustness value of 1 indicates a protocol
wins against all others whereas a value of 0 indicates it loses against all others.

Finally, we apply the evolutionary extension by modifying the above tournament
process  in  the  following  way.  During  a  tournament,  periodically,  peers  may
change their strategy to their opponents strategy using one of the evolutionary
algorithms described above. At the end of a simulation run the best performing
strategy in terms of evolutionary success is deemed to have "won" the tournament.
Wins are classified as "weak" or "strong" (see below for definitions). A strong and
weak  evolutionary  robustness  measure  is  calculated  for  each  protocol  by
averaging over all tournaments.

In  all  cases  simulations  involved  10  independent  runs  starting  with  different
pseudo-random number  seeds  and  averages  were  calculated.  This  is  necessary
because the BitTorrent game simulator involves several stochastic elements.

4.1 Actualization of BitTorrent strategies

We selected a subset of the BitTorrent strategies tested in [6]  covering the main
interesting  behavioral  variants.  The  dimensions  and  possible  values  for  each
dimension are described below.

Stranger policy: Three kinds of policies are used here: 

 Periodic: Give resources to strangers periodically.

 When needed: Only give resources to strangers when do not have enough
regular partners.

 Defect: Never give resources to strangers.

Number of strangers can be either 0, 1 or 2. 
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Selection function: This depends on the Candidate list, Ranking function and the
number of peers selected:

 For the  Candidate list we use the BitTorrent's default  TFT, in which a
peer only places those peers in the candidate list who reciprocated to it in
the last round.

 For the Ranking function we use all six actualizations: Sort Fastest, Sort
Slowest, Sort Based on upload bandwidth proximity (called 'Birds'), Sort
Adaptive (ranks peers in order of proximity to an aspiration level, which
is adaptive and changes based on a peer’s evaluation of its performance),
Sort Loyal (ranks peers in order of those who have cooperated with the
peer for the longest durations), and Random.

 the number of top k peers selected after applying the raking function can
be from the range [0,4]. Note that the case k=4 is in line with the default
BitTorrent parameter for the number of partners  in a peer's  unchoking
slots.

Resource allocation: Two allocation methods are tested: 

 Equal split gives all selected peers equal resources (upload bandwidth).

 Freeride gives nothing to partners.

Altogether,  the  above  dimensions  specify  a  space  of  540  different  protocol
variants.

4.2 Strong  and weak evolutionary robustness

Assuming that R=RT , K=N and w=1 in our algorithm, the robustness value of a

protocol  P is  calculated  in  the  following way. For  each  run,  we compare  the
average fitness value of  P with the average fitness of the other protocol. If the
average fitness of  P is greater than the average fitness of the other protocol, we
mark it as a 'Win' for  P, otherwise we mark it as a 'Loss' for  P.  The robustness
value for P is calculated by number of games that it wins against all opponents in
all runs divided by the total number of games that it plays, which is constant for
all protocols.

This single robustness measure is sufficient  when no evolutionary algorithm is
applied. However, when applying an evolutionary algorithm this approach does
not  capture  the  possible  dynamics  of  strategy  change  over  time.  We therefore
introduce two new robustness measures for evaluating a protocol variant within an
evolutionary  algorithm:  weak  evolutionary  robustness and  strong  evolutionary
robustness.
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Having  evaluated  the  selection  rule  in  Step  3  in  the  Algorithm  explained  in
Section 3, we denote the number of peers associated with strategy A and B as N A

and NB , respectively.

 Based on this fact, we define two kinds of 'win':

 If N A>NB holds in each and every Rth round of the algorithm, then we

mark this as a 'strong win' for protocol A.

 If N A≥NB holds  at  some  Rth  round  of  the  algorithm,  and

∑ N A≥∑ N B ,  then we mark this as a 'weak win' for protocol A.

The strong evolutionary robustness (and the weak evolutionary robustness) value
of  protocol  P is  calculated  by  the  number  of  games  that  it  strongly  wins
(respectively weakly wins) against all opponents in all runs divided by the total
number of games that it plays. For illustration of the definitions strong and weak
evolutionary robustness see Figure 1. A protocol is strongly robust against another
one if it never becomes a minority in the population during the simulation run. If
the protocol was in the majority for most of the time, but not in all rounds, then it
is weakly robust against the competing protocol variant1.

Figure 1

Illustration of strong evolutionary robustness (left) and weak evolutionary robustness (right) of a

protocol denoted with red line

Weak and strong evolutionary robustness measures differ from the standard non-
evolutionary  robustness  measure  because  they  do  not  measure  relative
performance  between  protocol  variants  directly,  but  rather  measure  their
replication success based on the outcome of an evolutionary algorithm.

5 Results
We have extended the cycle-based simulator used in [6] with the selection rules
(listed  in  Section  3.1)  and  with  the  ability  to  measure  the  strong  and  weak
evolutionary robustness of protocols (which were introduced in Section 4.2). In
the following we use the terminologies introduced in Section 4.1. 

1 The situation where both protocols stayed evenly matched throughout all rounds was
not found to occur in practice. 
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The simulation models a single swarm where peers share the same file. Time in
this model consists of discrete rounds. For peer discovery we assume that all peers
can connect to each other.  In every round each peer is fired in random order and
engages  in  connection and  data transfer  activities.  It  is  assumed that  all  peers
always have data that others are interested in.  In each round, a peer:

• decides  to  upload  to  (maximum)  4  peers  which  are  selected  by  the
Selection function; 

• uses its Resource allocation policy to decide how much to give to each of
the selected partners;

• decides whether to cooperate or not with strangers, which is based on its
Stranger policy. 

Each peer maintains a short history of actions by others. This is implemented as a
list, which has typically a length of 10-15 elements. At the same time, a peer also
has some rate of requesting services from other peers that  depends on specific
actualizations. This means that different protocols will request services at different
rates. This is how optimistic unchoking is mapped in our scenario. For example, a
freeriding protocol will request a service with a partner every round and offer no
bandwidth. If the chosen partner is a sucker (i.e., it accepts those protocols which
provide zero bandwidth), then this partnership will be maintained further on.

Each simulation experiment was run with 50 peers and for 500 rounds in total.
The  peers'  upload  bandwidths  are  initialized  using  the  bandwidth  distribution
provided by [2]. This was done by deriving uniformly at random samples from
this  dataset  to  assign  to  the  peers  in  the  simulations,  hence  preserving  the
distribution. The distribution represents real download rates that were empirically
collected. Download is assumed to be infinite2. 

In the evolutionary approaches tested below we used the parameters: number of
rounds RT=500, number  of  peers  R=50,  selective  pressure  K=5,  mutation  rate

m=0.01, and intensity of selection w=1 as defaults. Note that we also used other
parameter setups and found no significant differences from the results obtained
using the defaults. 

Given  the  abstraction  level  of  the  simulator  only  the  above  parameters  are
required.  There  is  no  explicit  representation  of  pieces  or  seeding/leeching
behavior. Hence, the focus is on the effect of strategy interactions on data sharing3.

2 Since upload bandwidth is the main constraint in file sharing systems this assumption
does not significantly effect results.

3 A previous version of the simulator was validated against an actual BitTorrent client
implementation and experiments [6], which gives us some confidence in the validity
of the results.
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5.1 Without Evolution

Firstly, we calculated performance and robustness values for all our 540 protocol
variants  without applying  evolution  -  see  Figure  2.  Note  that  Performance  is
normalized over the entire protocol design space. These results serve as a baseline
for comparison with the evolutionary approaches. Also, we were interested to see
the effect of selecting only a subset of potential protocol variants from [6]. We
categorize those protocols which never share as freeriders.

We found that  the  ranking  of  the  protocols  is  comparable  to  those  previously
obtained. This result is non-trivial and reassuring. This is because it is the nature
of the DSA approach that the performance and robustness of any given strategy is
only calculated relative to the other strategies in the design space. This means that
results  obtained  for  one  space  of  strategies  can  not  be generalized  to  either  a
subset or superset of strategies without testing.  Hence our reproduction of results
for our chosen subset  allows us to be more confident that the previous results
obtain were not merely the result of an artifact of large the design space chosen
there.

Figure 2

Robustness against Performance using 540 protocol variants without apply evolution

5.2 Tournament selection4

We  performed  evolutionary  simulations  for  all  protocol  variants  using  the
tournament selection approach. We then analyzed these results by comparing them
to the Performance and Robustness obtained from the previous non-evolutionary

4 Note  that  the  term  "tournament  selection"  should  not  be  conflated  with  the
"tournament"  nature  of  the  DSA approach.  These  refer  to  two different  kinds  of
tournament occurring at two different levels.
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simulations. As previously stated (in Section 4.2), each protocol is measured along
two  new  measures  -  strong  evolutionary  robustness  and  weak  evolutionary
robustness.

Figure 3 shows the results we got for the Robustness test. We can immediately see
that strategies  cannot be quantified using weak evolutionary robustness,  all  the
protocol  variants  have  roughly  the  same  value.  On  the  other  hand,  strong
evolutionary robustness correlates with the previously obtained non-evolutionary
robustness.  The  Pearson's  correlation  coefficient  of  robustness  and  strong
evolutionary robustness is 0.939.

This  result  indicates  that  evolution  based  on  tournament  selection  effectively
reproduces  the non-evolutionary DSA approach  so long as  strong evolutionary
robustness is used as a measure for winning. Or to put this another way, the non-
evolutionary DSA approach is a good predictor of strong evolutionary robustness
in this evolutionary setting. This is a non-trivial result because strong evolutionary
robustness measures the outcome of an evolutionary processes over time, whereas
non-evolutionary  robustness  is  based  on  relative  performance  in  one-shot
interactions.

Figure 3

Tournament selection – weak evolutionary robustness and strong evolutionary robustness compared to

non-evolutionary robustness

Figure  4 shows weak and strong evolutionary  robustness  against  performance.
Note  that  performance  is  calculated  identically  for  both  non-evolutionary  and
evolutionary approaches. Hence, performance values are identical to those given
in Figure 2. As we would expect, from the results given in Figure 3, we see that
weak evolutionary robustness does not distinguish between performance whereas
strong  evolutionary  robustness  reproduces  the  non-evolutionary  results  and  is
directly  comparable  with  Figure  2.  The  Pearson's  correlation  coefficient  of
performance and strong evolutionary robustness is 0.761.
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Figure 4

Tournament selection – performance

5.3 Death-birth selection, Birth-death selection

For both Death-birth and Birth-death selection we obtain almost identical results
to those for Tournament  selection.  Figure 5 shows the correlation between the
weak  and  strong  evolutionary  robustness  measures  of  the  different  protocol
variants we found using Tournament and Birth-death selection. As we can see the
weak evolutionary robustness values are very strongly correlated. In the case of
strong robustness  we notice  that  some strategies  can  have  significantly  higher
value under Birth-death selection. Closer inspection of these particular variants
indicated  they  used  the  Periodic  or  When-needed  stranger  policy, Sort  fastest
ranking function, 1 or 2 regular and optimistic unchoke slots and Equal split as
resource allocation. 

Figure 5

Comparison of Tournament and Birth-death selection.

Interestingly, the Death-birth selection mechanism produced very much the same
ranking  as  Birth-death  selection.  Namely,  we  got  0.987  and  0.998  Pearson's
correlation coefficients for weak and strong evolutionary robustness, respectively. 
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We can  conclude  that  these  evolutionary  algorithms  also  reproduce  the  non-
evolutionary  results  when  the  strong evolutionary  robustness  measure  is  used.
This indicates that different evolutionary algorithms based on fitness comparisons
are predicted by the non-evolutionary DSA approach. 

5.4 Satisficing selection

This selection mechanism differs from the above tested ones as it is using only
local information. This means that no fitness comparisons are made between peers
but  rather  individual  peers  assess  their  own  performance  against  an  internal
threshold or target.

As can be seen in Figure 6 and 7, neither weak nor strong evolutionary robustness
make any significant distinction between the different protocol variants.  In this
case we cannot even distinguish between freeriders and normal strategies.

Figure 6

Satisficing selection – robustness

Figure 7

Satisficing selection – performance

In general outcomes appear to be little more than random noise. Since there are
four possible outcomes from a tournament we would expect uniformly random
outcomes to produce weak and strong evolutionary robustness values around 0.25.
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Note, however, a small cluster of freeriders can be seen to have noticeably lower
weak evolutionary robustness values around 0.4 on the x-axis (Figure 6, left hand
side). These appear to be a special case of very poorly performing protocols, as
can be seen in Figure 7  (left hand side) where this cluster is bunched at 0.0 on the
x-axis.

More interestingly, a  small  cluster  of  72 non-freerider  variants  can  be seen in
Figure 6 (right hand side) with near-zero robustness, but relatively high levels of
strong evolutionary robustness (around 0.3). This means that these variants which
have almost zero non-evolutionary robustness do much better in an evolutionary
setting. These protocols do not communicate with strangers (thus they are unable
to bootstrap in an homogeneous environment, i.e., producing zero performance),
use  Equal  split  as  resource  allocation  and  have  k>0  regular  partners.  Closer
inspection of the simulation results revealed that these particular variants  always
dominate in scenarios where they are paired with freeriders. This does not imply,
though, that these protocols do better than freeriders. Due to the local nature of the
calculation of the satisfaction threshold this only means that variants using these
kind of  protocols  do  gradually  better  than  in  the  previous  round,  whereas  the
competing freerider protocol variant' performance varies up and down.

Overall we can see that the non-evolutionary DSA approach does not predict the
outcome of the satisficing approach. However, there are many ways to implement
a satisficing approach and it would be interesting to explore other implementations
to identify conditions under which (if any) results would converge to the previous
DSA  results.  For  example,  some  satisficing  approaches  utilize  an  adaptive
satisfaction  threshold  that  may  increase  above  over  all  previous  performances
obtained  through  the  application  of  noise  (a  "trembling  hand  effect")  [20].
Alternatively a minimum as well as maximum threshold could be employed.

Conclusions

We developed  a  limited  evolutionary  extension  to  the  Design  Space  Analysis
approach [6]. We applied this extended approach to an exploration of BitTorrent
protocol variants capturing the possibility of dynamic changes in protocol variants
over  time  within  pairwise  tournaments  between  protocols.  We found  that  the
results  obtained  were  broadly  consistent,  in  most  cases,  with  those  previously
obtained thus increasing our confidence in previous results as a predictor for this
form of limited evolution.

The subset  of  protocol variants  that  we selected  ranked similarly to  the larger
design space results. This is a non-trivial observation since results form a given
design space do not necessarily generalize to a subspace. This is due to the co-
evolutionary nature of open peer-to-peer systems - where the utility of each peer is
dependent on the dynamic composition of protocol variants in the population as a
whole rather than being related to a fixed and equal partition.
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We found that  applying a  satisficing  approach  did  not reproduce  the  previous
results  and  in  fact,  as  implemented  here,  produced  almost  random  outcomes.
However, some of the results point  towards the kinds of alternative satisficing
approaches  that  might  produce  comparable  outcomes.  It  is  of  interest  how
different  satisficing approaches  behave because  it  could be argued that  such a
procedure  may  capture  the  kinds  of  user  behavior  that  leads  to  a  change  of
protocol  variants  over  time  -  since  users  tend  to  have  access  only  to  local
information on protocol performance.

The work here limits coevolution to all pairs of variants. To fully understand co-
evolutionary dynamics it would be necessary to allow for many protocol variants
from  the  design  space  to  exist  in  the  population  simultaneously.  However,
previous work has demonstrated the difficulty in analyzing the results of evolution
applied to populations with design spaces as low as six variants [16]. Our aim in
limiting evolution in this way is as a step towards modeling and understanding co-
evolutionary  processes  in  large  design  spaces  while  linking  back  to  previous
results.  This  requires  careful  experimental  design  and  analysis  to  avoid  a
combinatorial explosion and to filter for noise which plays a large role in protocol
pairings and can be magnified by coevolution.

Future work may develop coevolutionary algorithms that can be applied to a large
design space within a single population by grounding the algorithms in a theory of
user and developer behavior. Developers modify and release new protocol variants
and users decide if to download and use them. It is not beyond current approaches
to model this process in a coevolutionary simulation, but more detailed user and
developer models would need to be formulated.
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