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Abstract: The paper proposes a microservice-based data warehouse with a semantic layer
to enhance system efficiency. Semantics in the data warehouse offers improved business
process modeling, better resource utilization, and streamlined service management. Our
solution integrates semantics into a Dockerized data warehouse built with Ruby, using Neo4j
and Redis for ontology and tags. System evaluation demonstrates that semantics brings
benefits to both users and administrators. Ontologies enable precise pipeline selection, while
tags require fewer resources. Additionally, semantics facilitate automatic deployment and
optimize resource usage during idle periods. With dynamic processing pipelines and
automation, the system becomes less sensitive to input errors and is better prepared to handle
new data sources.
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1 Introduction

Microservices are one of the current leading trends in software development,
offering advantages like scalability and efficient resource management [1] [2], but
they also bring challenges in data processing within distributed architectures [3] [4]
(e.g., correct data routing can be more complex). The proposed methodology
explores the integration of semantics into a microservice system to improve its
efficiency and resource utilization. Semantics is mainly used to understand the
context and meaning of the stored data [5]. The proposed approach uses semantic
techniques to dynamically analyze incoming data and ensure appropriate service
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activation within microservice-based data warechouses. Semantic annotation
improves microservice usage, making systems more comprehensible and efficient.
Traditional business modeling is obsolete and costly, whereas dynamic semantic
workflows offer flexibility and reusable code without hard-coded service
configurations [6]. Our approach follows a data-driven microservice approach,
addressing challenges in ETL pipelines by dynamic pipelines for improved data
processing.

2 Background and Related Work

2.1 Data Warehouses and Semantics

The main purpose of data warehouses is to integrate, store, and process data from
heterogeneous sources [7], serving as key decision-support tools [8]. By managing
large, non-volatile data, they provide insights across different time periods, aiding
strategic decision making. While primarily handling structured data, approaches for
unstructured data also exist [9]. Additionally, data warehouses act as research
repositories [10] (e.g. in medical fields, they consolidate DNA data, genetic
predispositions, and past illnesses to support further discoveries).

Semantics brings many advantages in different fields of computer science,
including recommendation systems [11], document indexing [12], and the semantic
web [6], which can bring benefits to data warehouses. Unlike traditional relational
databases, semantic data warehouses store and process data and provide semantic
annotations, enriching data management and analysis. However, traditional ETL
pipelines do not inherently support semantic information, thus requiring
architectural modifications [13]. This challenge is addressed by integrating a
semantic layer, typically applied after data processing and storage, rather than
within the ETL pipeline.

2.1.1 Integration of Semantics in Data Warehouses

Enabling data integration is a key aspect of semantic usage with connection to data
warehouses. Semantic integration functions on a higher system level, enabling the
creation of a single scheme [13] for multiple schemes or data sources. Semantic
integration can understand the data and combine them by their contextual message
or meaning. A unified layer enables users to query data from multiple sources at
once, which enables access to a wider data range. However, achieving perfect
integration is not possible and brings problems that need to be solved. Different
table names, column names, or data formats can cause problems in integration.
In the past, manual approaches were used for comparison of schemes.
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These approaches were based on rules, which were shown to be problematic for
some sort of standardization. Implementation of these rules for each specific
problem was difficult and demanding. As a result, semantic integration based on
these rules was not achieving desired levels of accuracy.

2.1.2 Semantic Layer in Data Warehouses

The semantic layer transforms data representation from a model-based approach
to a business-oriented approach, enhancing readability and analysis. This shift
aligns data structure with operational and analytical needs, making business entities
and their relationships more intuitive. It also unifies data across an organization,
improving decision making [14].

Key Advantages of the Semantic Layer

e Accessibility: Improves data availability by enabling retrieval through
semantic markers (e.g., users) instead of complex queries.

¢  Query Speed: Enhances performance using views, materialized views, or
pre-executed queries, reducing redundant computations.

e Single Source of Truth: Ensures all departments work with the same
semantic definitions, fostering consistency.

e Security & Authorization: Supports access control mechanisms,
restricting sensitive data (e.g., salaries, addresses) to authorized users.

The semantic layer can also handle pre-processing and annotation of structured and
unstructured data, grouping them by meaning. It enables seamless integration of
multiple data sources while simplifying relationships and processing. Additionally,
a standardized semantic language across the organization prevents inconsistencies,
ensuring clarity and reducing conflicts.

2.2 State of the Art

This section provides an overview and comparison of data warehouse solutions and
business intelligence tools (BI), highlighting their integration of semantic layers.
Data warchouses fall into two main categories: cloud (widely adopted) and local
(less common due to maintenance challenges). Effective management is essential
but time-consuming.

Semantic layers enhance data analysis and comprehension, though not originally
part of data warehouses. Their widespread adoption varies across systems, mainly
applied after the data is imported. However, SETL introduces a unique approach,
directly influencing data, aligning with this paper's approach.
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AtScale [15] integrates a semantic layer into data warehouses, enhancing analysis
and decision making. It employs:

e Dimensional modeling: Uses a star schema to structure data around
business concepts, improving clarity.

e Metadata management: Centralized metadata storage ensures
consistency across the organization.

e Data virtualization: Enables virtual data views, reducing physical
movement and improving performance.

AtScale is compatible with major data warehouses (Google BigTable [16], Redshift
[17], Azure [18], Snowflake [19]) and offers unified SQL access, streamlining data
management.

Dremio [20] is a data warehouse with a semantic layer that organizes data into
semantic spaces, allowing multiple groups with different access rights. The data
warehouse has the following key features:

e Semantic Metadata Catalog: Stores metadata on tables, views, data
types, and relationships, enhancing data comprehension.

e User Accessibility: Simplifies data access for non-developers by
structuring data in a more business-oriented way.

e Semantic Grouping: Groups data by meaning to create new, easily
interpretable tables.

e Limited cloud support: Cloud-native performance could be improved.

e Limited version management: Upgrades can be challenging, making
rollbacks complex.

Looker [21] is a data analysis and visualization platform with a semantic layer,
focusing on shifting data from a model-based to a business-oriented approach. It
connects to existing cloud or local databases rather than functioning as a standalone
data warehouse. Now part of Google Cloud [22], Looker integrates seamlessly with
Google BigTable. Its semantic model categorizes data, enhances business metrics,
and simplifies analysis by acting as a bridge between data sources and analytical
tools. Looker has the following key features and limitations:

e Strengths: Scalable, flexible, and well-integrated with Google services.

e Challenges: Limited visualization capabilities and high pricing, especially
for smaller businesses.

e Dependency: Performance relies on the efficiency of the underlying data
warehouse—slow databases lead to slow Looker queries.
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Datameer [23] is a cloud-based data integration and processing tool designed for
user-friendly data exploration and analysis. It supports Snowflake databases by
default but offers alternatives at additional costs. Datameer has the following key
features:

e Data Transformation: Converts raw data into a structured format for
storage in a data warehouse.

e Semantic Layer: Enables grouping, documentation, and categorization,
improving data integrity and accessibility.

o  User Accessibility: Aims to be intuitive for non-technical users but has
complex Ul and limited documentation, which may hinder usability.

Semantic Data Warehouse (SETL) [24] integrates a semantic layer into the ETL
(Extract, Transform, Load) process, unlike traditional semantic approaches that
focus only on categorization. Evaluated with datasets from Danish Agricultural and
Business domains, this system directly transforms and stores data in RDF Triple
format within the data warehouse, ensuring semantic consistency at the storage
level. SETL has the following key features:

1) Semantic Data Extraction: Collects data from multiple sources
(databases, XML, web services) based on semantic metadata.

2) Semantic Data Transformation: Converts data into RDF format for
better interoperability and consistency.

3) Semantic Data Loading: Stores transformed data in a semantic data
warehouse, enabling advanced querying and analysis.

Unlike commercial solutions, SETL modifies data at the processing stage, ensuring
semantic accuracy before storage, an approach similar to the one used in this paper.

3 Design of Semantic-driven Data Warehouse

Different types of data can be understood by the system in various ways. In the
context of this system, it means the ability to figure out what is in the data without
any prior knowledge. Factors such as file type, coding method, or size can assist in
decision making by the system. Two main approaches will be used for this purpose:
first, the approach involving specific data identifiers and other key file information
is managed within an ontology system. Secondly, a similar approach uses tags
instead of an ontology to track the data and its movement through the system.
The system will implement both semantic approaches.

The approaches will generate processing pipelines that will be used for processing
in two different ways: classical and dynamic. In the classical method, all the
required containers will be deployed and waiting for the data to process them. After
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processing, they will return to idle mode and wait for data once again. The dynamic
option will load the containers needed for processing from the pipeline, start
instances of these containers, process the required data, and then stop these
containers.

This covers all instances where semantics will be employed to manage the system:
firstly, in data recognition, secondly, in pipeline creation, and lastly, in container
management. Each part of the system has its specific perspective of implementation
and will be described in its respective section.

3.1 Data Recognition

The first step to accurately generate effective processing pipelines or to correctly
initiate containers based on pipeline requirements is to identify the data the system
is processing. Key data identifiers are collected from the observed data to achieve
this. This system will not implement any automatic collection of these identifiers,
but it presents an interesting option for future research and development.

This new system component removes the burden on users who previously needed
to manually select the origin of the data they were importing in the original design
of the data warehouse. This part of the system will perform this task automatically
based on the semantic understanding of the data. To accomplish this, a new service
will be introduced that is responsible for collecting metadata. This design suggests
these metadata:

1) file endings: easily obtainable and can greatly narrow down the number of
possible suppliers

2) mime-types: offer option to understand data format more precisely, as file
endings can be lost/edited and overall much more misleading

3) charset: identifies coding used in the file, can help distinguish between
two similar data files

4) country/language: identifying the country or region will help separate
different groups of data files

5) header columns: header columns are representing specific data stored in
files, and as such they should represent most unique identifiers, even
though its not true for all column names (PSC, Address, etc.)

One possible option is to use a containerized version of Apache Tika, which will be
tasked with metadata collection. Apache Tika is an excellent choice because of its
ability to extract a wide range of metadata from various file types, such as xIsx, csv,
xml, and txt in our case. It provides comprehensive and robust community support,
offering numerous deployment options, making it an ideal docker container for this
system.
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3.2 Ontology

Crucial part of this solution is the ontology. As mentioned in the state of the art,
there are many ways to implement the ontology. The current state of the art in
computer representations is graph representation. Native ways of representing
graph data are graph databases, which offer a more intuitive way of representing
these types of data. There are many existing solutions that can be used in this system
such as GraphDB [25], Neo4j [26], CosmosDB [27], RedisGraph [28], and so on.
Each of these tools has its own strengths. The proposed solution opts to use Neo4;j,
which is the leading graph database. It will implement the semantics module that
brings semantics standards such as RDF to the native graph database, which is not
designed with semantics in mind. Neo4j will be responsible for finding neighbors
based on relations among nodes.

The ontology will be implemented using a docker container, as expected from the
system. For communication, the Ruby library will be used on the open port of
Neo4j. The advantage of this tool is the graphical management tool accessible at
port 7474, which offers a clear management tool for the addition or edit of new
nodes or removal of unwanted nodes or relationships.

This service will be responsible for managing queries for data recognition and also
for managing possible processing paths for dynamic pipelines. The service then
becomes a key part of the semantic system and, as such, will require proper scaling
and resource utilization, so it will not be a bottleneck of the whole system.

3.3 Tags

Same approach is applied in the proposed solution for Tags management.
The proposed plan is to use the Redis stack server container for tag memory storing
and index searching. Redis is selected as the leading option in the field of in-
memory databases with support for tags. This support brings benefits and
functionality for tag matching searching and indexing. The system will be
communicating with the Redis container through the Ruby library implemented in
the tags manager. This manager will manage the queries creating, manage index
creating and searching, manage results, and process them in the form that is used in
the rest of the system.

This part will include some sort of management Ul, for tag editing and overall
CRUD operations, it can be implemented in the admin _service container as a
unified form of management and communication point. Another option is to include
the RedisInsight container, which can be used to manage Redis and, it can also
manage the data stored there directly.
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3.4 Semantic Graphs

Various approaches to representing semantic knowledge or ontology come with
their own complexities. The widely adopted method for ontology representation is
typically the graph model. Its popularity arises from its effective visualization of
connections and nodes, which aligns well with human cognitive processes and
understanding. This makes it easier to understand, show detailed knowledge, and
explain complicated relationships. However, a notable challenge lies in the
maintenance of this representation. Graphs can expand significantly, introducing
complexities when performing routine tasks such as adding new nodes. Navigating
through an extensive array of nodes to identify new relationships poses a substantial
difficulty. Although automation can address certain aspects, human oversight
remains essential to ensure the accurate and meaningful representation of
knowledge within the ontology.

However, tags offer a different approach altogether. They provide a simple way of
showing semantics, where important information is communicated mainly through
keywords. This simplicity greatly reduces the complexities of maintaining tag
representations. It enables for easier automated node management, giving more
flexibility with fewer strict rules. However, tags can have problems to represent all
knowledge about data in proper way, for example, relationships can represent
challenge. These "small" information, lost in tags creation because they were lost
in tags creation can be crucial for semantics in some situations. Without these
connections, specific information can lack integrity and context. The lack of clear
visualizations and representations in the tag representation can create challenges for
those trying to fully understand its complexities and information. This can lead to
lesser accuracy in conclusions created from tags in comparison to ontology with
much more complex structure.

3.5 Semantic Data Warehouse Architecture

The resulting architecture will look as demonstrated in Figure 1. This figure shows
the planned structure of a data warehouse after the introduction of semantics. Each
of the blocks represents a docker container deployed at least once (with the
exception of processors and optional processors that do not have to be deployed
when automatic deployment is set). Containers are divided into four main
categories, divided by color. Each color has its own meaning:

e Blue containers are containers that were already existing in previous
iteration of data warehouse, without the semantic layer (see [29]).

e  Purple containers represent the tools used in this paper. They are used to
process (Apache Tika), store (Redis/PostgreSQL) data more effectively,
automate tasks for efficiency (Redis - background jobs) and manage
semantic knowledge, in tags (Redis) and ontology (Neo4j) representations.
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Green containers represent three special managers, each of them
responsible for management of some sort of process. The Tag Manager
communicates with the tags stored in Redis and constructs paths. The same
applies to the ontology manager that talks to the ontology and selects the
best paths. Docker manager is responsible for communication with the
Docker API, deployed on the host machine. It starts and stops containers
required in processing pipeline, if automatic deployment is started.

Red container is only for the semantic manager. This service is special
because it manages the whole semantic processing in the system. It sends
requests on selected semantic approaches, gathers data, communicates
with the docker manager, and finally sends the data to the created
processing pipeline.
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Figure 1

Semantic Data Warehouse architecture
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The same logic is used also for the connections, which represent the communication
among the containers. These are split into three different line types:

e  Default line represents requests from one container to another.

o The dashed line is for the "return" request, which represents response to
the request. This cannot be skipped, and if not obtained, system will not
correctly continue in processing.

e The dotted line represents one special usecase, when automatic
deployment is enabled. In that case, the Docker manager communicates
with the processing containers in order to start/stop them. If this processing
is not enabled, these requests will not be sent.

In general, the structure will be based on the semantics manager, which takes
responsibility for the management of the system. In order to do this, it will also use
a number of new services. Important containers are used for ontology, tags, and
docker management. Thanks to them, semantics manager will be able to obtain
information about data it is processing, and then select the best processing pipeline
for successful processing and data storing.

4 Platform for Data Warehouse Deduplication

This section describes the steps required for the replication and realization of the
system developed in this paper. It is divided into multiple sections aimed at new
parts of the system. These chapters focus on the additional new services (managers)
that are responsible for semantic implementation together with the tools that are
used for their functioning. In addition, the deployment and the data model for
semantics are shown and explained.

For a better understanding of the changes made in this paper, it is necessary to
explain key concepts from previous paper done and outlined in [29] [30]. Previous
paper aimed at the construction and testing of modular data warehouses based on
microservice architecture. This system introduced containerized data pipelines,
which allowed ecasier data sharing between multiple different endpoints and
containers designated for data processing and storing. The primary components of
the processing pipeline included Data Loaders, Processors, and Savers. Each of
these parts of pipeline are designed for a specific task, which are explained below:

e Data Loaders were designed to download specific data (from APIs or other
sources) or receive it through user input.

e Processors containers received raw, unprocessed data and transformed
them into a ready-to-store version.

e Savers received processed data, determining where and how to store it
while managing data storage.
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Although the system worked as intended, a major drawback was its static
architecture construction, which made changes to the system very difficult. Users
had to identify the origin of the files they were uploading for successful processing.
The system then works with the assumption that the data are of the origin, selected
by the user. If the user does not know the origin or selects the wrong one, it creates
errors and leads to data loss. The next problem is that the processing pipelines use
a fixed architecture, lacking dynamic adjustments to satisfy diverse data needs. This
is the challenge addressed in the current paper.

‘Semantic
manager

‘ Apache Tika Neodj Processor oN Processor | Saver |

PostgreSQL ‘

Raw data/File
raw data

headers, language

headers, language

supplier, paths

raw data

processed data

processed data

processed data

Figure 2
Sequence diagram which demonstrates flow of data in system

4.1 Semantic Manager

Central point of the newly introduced semantic layer is the semantic manager,
which serves as the key point for all semantic management within the system.
Thanks to the modular microservice architecture of the original data warehouse, this
manager seamlessly integrates this layer into the solution as a new service (or
containers in our case). The key difference between the original data warehouse and
the new system using the semantic layer involves redirecting requests previously
shared directly from data loaders to processors. Now, these requests are first routed
to the semantic manager, which then constructs the best processing pipelines. This
process is repeated for each request and creates a dynamic flow of data in the
system, based on the identified supplier. This new processing flow is illustrated in
Figure 3.

The first data routing displays the original flow of the data in the application, where
a fixed processing pipeline was used for the data flow. The lower data flow
demonstrates the new approach used in this paper. The new service, semantic
manager, is colored green and is placed after data collection (yellow service/s). This
service in the processing pipeline is very important for semantics operation, as it
has to occur as soon as possible after data loading to identify given data.

-313-



A.Zak etal. Microservice Data Warehouse with Dynamic Semantic Workflows

‘/’7\.
Data loaders
(downloaders, —— > Processors ——> Savers
uploaders, etc.)

/

Data loaders

Semantic
(downloaders, ——— — | Processors —— Savers
uploaders, etc.) 9
- AN )
Service <«—— Service ——> Service Service

Figure 3
Original static processing pipeline (upper) and new dynamic processing pipeline (lower)

After successful identification of the received data, the next step for the semantics
manager is to create an appropriate processing pipeline that has an optimal
combination of best services and length. One of possible processing pipelines is
mirroring the original static processing path, where data are flowing from the
identification to processor, and from processing to storing. Other alternative
options, colored blue, can bring other services into play, which can be placed at
different places in the pipeline. This new pipeline can completely bypass
processors, can be placed between them, or even can go directly to saver if that is
desired behavior of specific data. Another flow option is represented by the pink
service, which serves as the final step in the pipeline, providing an additional choice.

Searching of correct data flows is based on provided parameters for request, which
can be changed and selected by user, but need to be set in semantics as an option.
Possible processing paths are defined in the data ontology, which is represented as
a graph in Neo4j.

This operation returns an array of conditions that should be fulfilled by the
processing pipeline if possible. After that, the system produces all possible paths;
for each path, an array of conditions is constructed, which are collected into an
array, which is then iterated over, and checks how much of a requested conditions
from request are inside of the given array. Counts the number of hits and stores the
index of the array with most hits (hits will be explained later). The resulting path on
given index is then returned for additional processing.

4.2 Tag Manager

This paper implements an alternative semantic approach, which is using tags. Tags
are, in a very simple way, simple strings that are used as values for identification
and recognition. They usually contain key entity characteristics they represent.
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While it is preferred to have unique tags, it is not a strict requirement. The main
advantage and significance of tags is in their count. More tags enable for more
precise identification as a larger number of attributes can be matched. The bigger
number of tags also comes at the price of higher memory and storage consumption.

For this implementation, the system uses Redis as an in-memory storage solution
because of its superior speed compared to traditional data storage. This choice is
particularly advantageous, as it works with a relatively smaller amount of data
stored in memory, minimizing the impact on overall memory consumption. When
the application is not active, the data are persistently stored in a text file, which is
loaded upon the application startup. The representation of the data is as follows:

For this implementation, system uses Redis as an in-memory database, mainly due
to its high processing speed because data are stored in the memory, not in the
storage. This tool is very beneficial, mainly because the number of tags for suppliers
is based on the number of suppliers, which are not an infinitely growing set of
values. Data are loaded into Redis from the text file which contains Redis
commands which are then executed. For example:

HSET <id> name <name> tags <tags.....>

The whole query is constructed as a full text search on supplierIndex where the tags
field contains given attributes and the payload also has the attributes, return score,
and also uses a special scorer named HITS SCORER which is explained later.
The query is then executed, and the results are processed.

When it comes to the stop-words, systems approach is to not eliminate them. Stop
words are something that usually occurs in the normal text, but this system works
with the column headers and file types, which often do not contain stop words and
automatic removal could potentially remove something important from the tag.
Also, the index specifically requests HASH data format instead of JSON data
storing, with "supplier" prefix for the identifier. At the end, the command setups the
data scheme, which setups name field as TEXT and tags field as TAG field.

System stores endpoints data in classical key-value format. This simple approach is
based on idea that one endpoint has one condition that is specific for it and can be
identified by that condition. This information enables more efficient structure in this
key-value format

One key part of the solution already mentioned before is custom scorer. Redis
enables tag searching and also provides scoring for the obtained results. It offers
multiple scorers, which can be used, but all of them are used for full text processing
and things such as TF-IDF, which is default scorer, are not optimal for this task as
it calculates many unnecessary operations and also lowers and boost score based on
terms frequency, etc. which is opposite to what this system needs.
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For this reason, the system has its own custom scorer named HITS SCORER
implemented in C. It uses payload option for data loading and it simply compares
strings received in payload part and data loaded from Redis.

5 Experiments and Evaluation

The proposed evaluation examines the impact of the semantic layer on system
resource utilization, performance, and accuracy. Performance tests analyze
potential negative effects, ensuring implementation costs do not outweigh benefits.

5.1 Testing Environment

To ensure a consistent and reproducible evaluation, the experiments were conducted
on a system with the following specifications. Table 1 outlines the key hardware
and software parameters, including the operating system, CPU details, memory
capacity, and Docker and Docker Compose versions.

Table 1

Testbed specification
(N Ubuntu 22.04.4 LTS
Architecture x86 64
CPU Intel i5-7300HQ
Cores 4 @ 3.500GHz
Memory 16GB
Docker version 26.0.0
Docker-compose version 233

5.2 Platform Performance

The additional semantic layer brings new overhead to the system. In this part of the
evaluation, the performance of the system is compared in setup with semantic layer
and without semantic layer, between different semantic approaches (see Figure 4).

Each group in the graph represents three tests for a specific data load, organized by
series. In particular, the difference between the green and yellow bars, which signify
processing times for uploading a single invoice (with green indicating the default
system and yellow representing the semantic system using ontology), is relatively
small. In this comparison, the difference is only one second, with the average
processing time for the default system being 8 seconds and for the semantic system
being 9 seconds.
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Processing time for default system setup and semantic data warehouse using ontology

5.3 Platform Memory Utilization
Resource utilization carried out on both semantic approaches used in the system.
The results are compared among these approaches and also with the results gathered

from the original data warehouse without the use of semantics.

6000

4000

2000

997,74

639,41 719,57 759,03 812,42 853,68

1 2 3 4 5

X non-semantics-5 X ontology-5 x tags-5 @ tags-1 @ ontology-1 @ non-semantics-1

Figure 5
Memory consumption of system over time in different configurations and different number of uploads.
Vertical axis values are in megabytes and horizontal axis describes order of uploads.

Figure 5 shows multiple lines with different colors and also two groups, one with
crosses and one with dots or points. Lines with dots represent memory consumption
for different setups of data warehouse and semantics, and both for a single uploaded
invoice. The lines with crosses represent the same setups but for five uploaded
invoices at once. The lowest line in the graph (purple) represents the data warehouse
without any form of semantics and without additional containers running for
semantics. The system in this configuration uses the lowest amount of memory
through multiple uploads of one invoice. The system in such a setup increased its
memory consumption by around 200 megabytes. The next blue line is for the same
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setup, but this time 5 invoices are uploaded in each step. Memory requirements are
higher, but this is for obvious reasons, as the system works with much more data,
which consumes more memory.

5.4 Evaluation of Dynamic Pipeline Construction

This experiment evaluates the accuracy of semantic data understanding, a critical
aspect of system functionality. If accuracy is insufficient, the system fails to operate
correctly. The system assesses pipeline selection accuracy based on provided
conditions, ensuring optimal processing for each semantic type.

This subsection introduces conditions which are values that are passed to the system
when receiving data files. They can represent options for the user to interact with
the system; for example, when they want to send email, we represent this option
with send email string in the input field on the upload page. Conditions also
represent marks given by the system to specific data types. For example, when users
want the system to schedule CRON job when data are received, they can add this
condition to the data node (in both Tags or Ontology) and as such it will
automatically add itself to the system.

The conditions are then used in the correct path creation/selection. Both ontology
and tags use different approaches to pipeline creation/selection. Tags are using a
much simpler approach where the processing path is not selected among existing
options, but rather created based on the values received in the data recognition and
conditions. Ontology, on the other hand, rather selects the best option based on
identification and conditions. It holds pre-existing network of possible processing
paths in graph. For identified supplier are then selected all possible paths that can
be used. These are then compared, and the system selects best, based on the number
of hits. This means that ontology can select processing pipeline that contains
endpoints that are not in conditions or selected pipeline can miss some of these
endpoints for situations where better processing pipeline is not possible.

Figure 6 shows the experiment results. Each option is described with number and
has two bars describing hits percentage for different values calculated and resulting
(green) average of these two values. In this scenario, system has 7 possible paths.
The numbers on the x-axis are used for describing the possible paths, as these would
be very long for simple showing.
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Figure 6
Comparison of hits percentage for path conditions and input conditions (1 received from user) and their
resulting average score

Conclusions

The integration of a semantic layer into microservice-based data warehouses shows
a significant advancement in the automation and adaptability of data processing
pipelines. By enabling context-aware service selection and reducing manual
configuration, the system enhances both usability and operational efficiency.
The paper presented and evaluated two semantic approaches: 1) ontology-based and
2) tag-based.

The evaluation demonstrated that while the semantic layer causes tolerable
overhead, it offers considerable gains in pipeline flexibility and data recognition
accuracy. The ontology-based method enables deeper semantic reasoning and
precise workflow alignment, but it comes at the cost of increased system complexity
and performance limitations, particularly due to the use of Neo4j as the backend. In
contrast, the tag-based approach, though less expressive, proved to be lightweight
and effective in typical usage scenarios.

The experiments show that the choice of semantic backend has a significant impact
on performance and scalability. Neo4j, while powerful for general-purpose graph
processing, is not optimized for semantic reasoning and RDF triple management.
Future work will address this limitation by exploring alternative triplestore systems,
such as GraphDB or CosmoDB, which offer native support for SPARQL and
enhanced inference capabilities. This improvement can optimize ontology-driven
processing and increase the accuracy and efficiency of dynamic pipelines.

While the paper is primarily focused on structured data sources such as invoices,
the presented approach is modular and extensible. By incorporating metadata
extraction tools like Apache Tika and expanding the semantic rules or tag sets, the
system can be extended to accommodate unstructured or semi-structured data
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formats such as PDFs, emails, XML documents, or sensor logs. Future work will
explore dynamic recognition and processing of these formats, potentially
integrating natural language processing (NLP) techniques for context extraction and
semantic tagging.
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