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Abstract: The paper proposes a microservice-based data warehouse with a semantic layer 
to enhance system efficiency. Semantics in the data warehouse offers improved business 
process modeling, better resource utilization, and streamlined service management. Our 
solution integrates semantics into a Dockerized data warehouse built with Ruby, using Neo4j 
and Redis for ontology and tags. System evaluation demonstrates that semantics brings 
benefits to both users and administrators. Ontologies enable precise pipeline selection, while 
tags require fewer resources. Additionally, semantics facilitate automatic deployment and 
optimize resource usage during idle periods. With dynamic processing pipelines and 
automation, the system becomes less sensitive to input errors and is better prepared to handle 
new data sources. 
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1 Introduction 

Microservices are one of the current leading trends in software development, 
offering advantages like scalability and efficient resource management [1] [2], but 
they also bring challenges in data processing within distributed architectures [3] [4] 
(e.g., correct data routing can be more complex). The proposed methodology 
explores the integration of semantics into a microservice system to improve its 
efficiency and resource utilization. Semantics is mainly used to understand the 
context and meaning of the stored data [5]. The proposed approach uses semantic 
techniques to dynamically analyze incoming data and ensure appropriate service 
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activation within microservice-based data warehouses. Semantic annotation 
improves microservice usage, making systems more comprehensible and efficient. 
Traditional business modeling is obsolete and costly, whereas dynamic semantic 
workflows offer flexibility and reusable code without hard-coded service 
configurations [6]. Our approach follows a data-driven microservice approach, 
addressing challenges in ETL pipelines by dynamic pipelines for improved data 
processing. 

2 Background and Related Work 

2.1 Data Warehouses and Semantics 

The main purpose of data warehouses is to integrate, store, and process data from 
heterogeneous sources [7], serving as key decision-support tools [8]. By managing 
large, non-volatile data, they provide insights across different time periods, aiding 
strategic decision making. While primarily handling structured data, approaches for 
unstructured data also exist [9]. Additionally, data warehouses act as research 
repositories [10] (e.g. in medical fields, they consolidate DNA data, genetic 
predispositions, and past illnesses to support further discoveries). 

Semantics brings many advantages in different fields of computer science, 
including recommendation systems [11], document indexing [12], and the semantic 
web [6], which can bring benefits to data warehouses. Unlike traditional relational 
databases, semantic data warehouses store and process data and provide semantic 
annotations, enriching data management and analysis. However, traditional ETL 
pipelines do not inherently support semantic information, thus requiring 
architectural modifications [13]. This challenge is addressed by integrating a 
semantic layer, typically applied after data processing and storage, rather than 
within the ETL pipeline. 

2.1.1 Integration of Semantics in Data Warehouses 

Enabling data integration is a key aspect of semantic usage with connection to data 
warehouses. Semantic integration functions on a higher system level, enabling the 
creation of a single scheme [13] for multiple schemes or data sources. Semantic 
integration can understand the data and combine them by their contextual message 
or meaning. A unified layer enables users to query data from multiple sources at 
once, which enables access to a wider data range. However, achieving perfect 
integration is not possible and brings problems that need to be solved. Different 
table names, column names, or data formats can cause problems in integration.  
In the past, manual approaches were used for comparison of schemes.  
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These approaches were based on rules, which were shown to be problematic for 
some sort of standardization. Implementation of these rules for each specific 
problem was difficult and demanding. As a result, semantic integration based on 
these rules was not achieving desired levels of accuracy. 

2.1.2 Semantic Layer in Data Warehouses 

The semantic layer transforms data representation from a model-based approach 
to a business-oriented approach, enhancing readability and analysis. This shift 
aligns data structure with operational and analytical needs, making business entities 
and their relationships more intuitive. It also unifies data across an organization, 
improving decision making [14]. 

Key Advantages of the Semantic Layer 

• Accessibility: Improves data availability by enabling retrieval through 
semantic markers (e.g., users) instead of complex queries. 

• Query Speed: Enhances performance using views, materialized views, or 
pre-executed queries, reducing redundant computations. 

• Single Source of Truth: Ensures all departments work with the same 
semantic definitions, fostering consistency. 

• Security & Authorization: Supports access control mechanisms, 
restricting sensitive data (e.g., salaries, addresses) to authorized users. 

The semantic layer can also handle pre-processing and annotation of structured and 
unstructured data, grouping them by meaning. It enables seamless integration of 
multiple data sources while simplifying relationships and processing. Additionally, 
a standardized semantic language across the organization prevents inconsistencies, 
ensuring clarity and reducing conflicts. 

2.2 State of the Art 

This section provides an overview and comparison of data warehouse solutions and 
business intelligence tools (BI), highlighting their integration of semantic layers. 
Data warehouses fall into two main categories: cloud (widely adopted) and local 
(less common due to maintenance challenges). Effective management is essential 
but time-consuming. 

Semantic layers enhance data analysis and comprehension, though not originally 
part of data warehouses. Their widespread adoption varies across systems, mainly 
applied after the data is imported. However, SETL introduces a unique approach, 
directly influencing data, aligning with this paper's approach. 
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AtScale [15] integrates a semantic layer into data warehouses, enhancing analysis 
and decision making. It employs: 

• Dimensional modeling: Uses a star schema to structure data around 
business concepts, improving clarity. 

• Metadata management: Centralized metadata storage ensures 
consistency across the organization. 

• Data virtualization: Enables virtual data views, reducing physical 
movement and improving performance. 

AtScale is compatible with major data warehouses (Google BigTable [16], Redshift 
[17], Azure [18], Snowflake [19]) and offers unified SQL access, streamlining data 
management. 

Dremio [20] is a data warehouse with a semantic layer that organizes data into 
semantic spaces, allowing multiple groups with different access rights. The data 
warehouse has the following key features: 

• Semantic Metadata Catalog: Stores metadata on tables, views, data 
types, and relationships, enhancing data comprehension. 

• User Accessibility: Simplifies data access for non-developers by 
structuring data in a more business-oriented way. 

• Semantic Grouping: Groups data by meaning to create new, easily 
interpretable tables. 

• Limited cloud support: Cloud-native performance could be improved. 

• Limited version management: Upgrades can be challenging, making 
rollbacks complex. 

Looker [21] is a data analysis and visualization platform with a semantic layer, 
focusing on shifting data from a model-based to a business-oriented approach. It 
connects to existing cloud or local databases rather than functioning as a standalone 
data warehouse. Now part of Google Cloud [22], Looker integrates seamlessly with 
Google BigTable. Its semantic model categorizes data, enhances business metrics, 
and simplifies analysis by acting as a bridge between data sources and analytical 
tools. Looker has the following key features and limitations: 

• Strengths: Scalable, flexible, and well-integrated with Google services. 

• Challenges: Limited visualization capabilities and high pricing, especially 
for smaller businesses. 

• Dependency: Performance relies on the efficiency of the underlying data 
warehouse—slow databases lead to slow Looker queries. 
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Datameer [23] is a cloud-based data integration and processing tool designed for 
user-friendly data exploration and analysis. It supports Snowflake databases by 
default but offers alternatives at additional costs. Datameer has the following key 
features: 

• Data Transformation: Converts raw data into a structured format for 
storage in a data warehouse. 

• Semantic Layer: Enables grouping, documentation, and categorization, 
improving data integrity and accessibility. 

• User Accessibility: Aims to be intuitive for non-technical users but has 
complex UI and limited documentation, which may hinder usability. 

Semantic Data Warehouse (SETL) [24] integrates a semantic layer into the ETL 
(Extract, Transform, Load) process, unlike traditional semantic approaches that 
focus only on categorization. Evaluated with datasets from Danish Agricultural and 
Business domains, this system directly transforms and stores data in RDF Triple 
format within the data warehouse, ensuring semantic consistency at the storage 
level. SETL has the following key features: 

1) Semantic Data Extraction: Collects data from multiple sources 
(databases, XML, web services) based on semantic metadata. 

2) Semantic Data Transformation: Converts data into RDF format for 
better interoperability and consistency. 

3) Semantic Data Loading: Stores transformed data in a semantic data 
warehouse, enabling advanced querying and analysis. 

Unlike commercial solutions, SETL modifies data at the processing stage, ensuring 
semantic accuracy before storage, an approach similar to the one used in this paper. 

3 Design of Semantic-driven Data Warehouse 

Different types of data can be understood by the system in various ways. In the 
context of this system, it means the ability to figure out what is in the data without 
any prior knowledge. Factors such as file type, coding method, or size can assist in 
decision making by the system. Two main approaches will be used for this purpose: 
first, the approach involving specific data identifiers and other key file information 
is managed within an ontology system. Secondly, a similar approach uses tags 
instead of an ontology to track the data and its movement through the system.  
The system will implement both semantic approaches. 

The approaches will generate processing pipelines that will be used for processing 
in two different ways: classical and dynamic. In the classical method, all the 
required containers will be deployed and waiting for the data to process them. After 
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processing, they will return to idle mode and wait for data once again. The dynamic 
option will load the containers needed for processing from the pipeline, start 
instances of these containers, process the required data, and then stop these 
containers. 

This covers all instances where semantics will be employed to manage the system: 
firstly, in data recognition, secondly, in pipeline creation, and lastly, in container 
management. Each part of the system has its specific perspective of implementation 
and will be described in its respective section. 

3.1 Data Recognition 

The first step to accurately generate effective processing pipelines or to correctly 
initiate containers based on pipeline requirements is to identify the data the system 
is processing. Key data identifiers are collected from the observed data to achieve 
this. This system will not implement any automatic collection of these identifiers, 
but it presents an interesting option for future research and development. 

This new system component removes the burden on users who previously needed 
to manually select the origin of the data they were importing in the original design 
of the data warehouse. This part of the system will perform this task automatically 
based on the semantic understanding of the data. To accomplish this, a new service 
will be introduced that is responsible for collecting metadata. This design suggests 
these metadata: 

1) file endings: easily obtainable and can greatly narrow down the number of 
possible suppliers 

2) mime-types: offer option to understand data format more precisely, as file 
endings can be lost/edited and overall much more misleading 

3) charset: identifies coding used in the file, can help distinguish between 
two similar data files 

4) country/language: identifying the country or region will help separate 
different groups of data files 

5) header columns: header columns are representing specific data stored in 
files, and as such they should represent most unique identifiers, even 
though its not true for all column names (PSC, Address, etc.) 

One possible option is to use a containerized version of Apache Tika, which will be 
tasked with metadata collection. Apache Tika is an excellent choice because of its 
ability to extract a wide range of metadata from various file types, such as xlsx, csv, 
xml, and txt in our case. It provides comprehensive and robust community support, 
offering numerous deployment options, making it an ideal docker container for this 
system. 
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3.2 Ontology 

Crucial part of this solution is the ontology. As mentioned in the state of the art, 
there are many ways to implement the ontology. The current state of the art in 
computer representations is graph representation. Native ways of representing 
graph data are graph databases, which offer a more intuitive way of representing 
these types of data. There are many existing solutions that can be used in this system 
such as GraphDB [25], Neo4j [26], CosmosDB [27], RedisGraph [28], and so on. 
Each of these tools has its own strengths. The proposed solution opts to use Neo4j, 
which is the leading graph database. It will implement the semantics module that 
brings semantics standards such as RDF to the native graph database, which is not 
designed with semantics in mind. Neo4j will be responsible for finding neighbors 
based on relations among nodes. 

The ontology will be implemented using a docker container, as expected from the 
system. For communication, the Ruby library will be used on the open port of 
Neo4j. The advantage of this tool is the graphical management tool accessible at 
port 7474, which offers a clear management tool for the addition or edit of new 
nodes or removal of unwanted nodes or relationships. 

This service will be responsible for managing queries for data recognition and also 
for managing possible processing paths for dynamic pipelines. The service then 
becomes a key part of the semantic system and, as such, will require proper scaling 
and resource utilization, so it will not be a bottleneck of the whole system. 

3.3 Tags 

Same approach is applied in the proposed solution for Tags management.  
The proposed plan is to use the Redis stack server container for tag memory storing 
and index searching. Redis is selected as the leading option in the field of in-
memory databases with support for tags. This support brings benefits and 
functionality for tag matching searching and indexing. The system will be 
communicating with the Redis container through the Ruby library implemented in 
the tags_manager. This manager will manage the queries creating, manage index 
creating and searching, manage results, and process them in the form that is used in 
the rest of the system. 

This part will include some sort of management UI, for tag editing and overall 
CRUD operations, it can be implemented in the admin_service container as a 
unified form of management and communication point. Another option is to include 
the RedisInsight container, which can be used to manage Redis and, it can also 
manage the data stored there directly. 
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3.4 Semantic Graphs 

Various approaches to representing semantic knowledge or ontology come with 
their own complexities. The widely adopted method for ontology representation is 
typically the graph model. Its popularity arises from its effective visualization of 
connections and nodes, which aligns well with human cognitive processes and 
understanding. This makes it easier to understand, show detailed knowledge, and 
explain complicated relationships. However, a notable challenge lies in the 
maintenance of this representation. Graphs can expand significantly, introducing 
complexities when performing routine tasks such as adding new nodes. Navigating 
through an extensive array of nodes to identify new relationships poses a substantial 
difficulty. Although automation can address certain aspects, human oversight 
remains essential to ensure the accurate and meaningful representation of 
knowledge within the ontology. 

However, tags offer a different approach altogether. They provide a simple way of 
showing semantics, where important information is communicated mainly through 
keywords. This simplicity greatly reduces the complexities of maintaining tag 
representations. It enables for easier automated node management, giving more 
flexibility with fewer strict rules. However, tags can have problems to represent all 
knowledge about data in proper way, for example, relationships can represent 
challenge. These "small" information, lost in tags creation because they were lost 
in tags creation can be crucial for semantics in some situations. Without these 
connections, specific information can lack integrity and context. The lack of clear 
visualizations and representations in the tag representation can create challenges for 
those trying to fully understand its complexities and information. This can lead to 
lesser accuracy in conclusions created from tags in comparison to ontology with 
much more complex structure. 

3.5 Semantic Data Warehouse Architecture 

The resulting architecture will look as demonstrated in Figure 1. This figure shows 
the planned structure of a data warehouse after the introduction of semantics. Each 
of the blocks represents a docker container deployed at least once (with the 
exception of processors and optional processors that do not have to be deployed 
when automatic deployment is set). Containers are divided into four main 
categories, divided by color. Each color has its own meaning: 

• Blue containers are containers that were already existing in previous 
iteration of data warehouse, without the semantic layer (see [29]). 

• Purple containers represent the tools used in this paper. They are used to 
process (Apache Tika), store (Redis/PostgreSQL) data more effectively, 
automate tasks for efficiency (Redis - background jobs) and manage 
semantic knowledge, in tags (Redis) and ontology (Neo4j) representations. 
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• Green containers represent three special managers, each of them 
responsible for management of some sort of process. The Tag Manager 
communicates with the tags stored in Redis and constructs paths. The same 
applies to the ontology manager that talks to the ontology and selects the 
best paths. Docker manager is responsible for communication with the 
Docker API, deployed on the host machine. It starts and stops containers 
required in processing pipeline, if automatic deployment is started. 

• Red container is only for the semantic manager. This service is special 
because it manages the whole semantic processing in the system. It sends 
requests on selected semantic approaches, gathers data, communicates 
with the docker manager, and finally sends the data to the created 
processing pipeline. 

 
Figure 1 

Semantic Data Warehouse architecture 
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The same logic is used also for the connections, which represent the communication 
among the containers. These are split into three different line types: 

• Default line represents requests from one container to another. 
• The dashed line is for the "return" request, which represents response to 

the request. This cannot be skipped, and if not obtained, system will not 
correctly continue in processing. 

• The dotted line represents one special usecase, when automatic 
deployment is enabled. In that case, the Docker manager communicates 
with the processing containers in order to start/stop them. If this processing 
is not enabled, these requests will not be sent. 

In general, the structure will be based on the semantics manager, which takes 
responsibility for the management of the system. In order to do this, it will also use 
a number of new services. Important containers are used for ontology, tags, and 
docker management. Thanks to them, semantics manager will be able to obtain 
information about data it is processing, and then select the best processing pipeline 
for successful processing and data storing. 

4 Platform for Data Warehouse Deduplication 

This section describes the steps required for the replication and realization of the 
system developed in this paper. It is divided into multiple sections aimed at new 
parts of the system. These chapters focus on the additional new services (managers) 
that are responsible for semantic implementation together with the tools that are 
used for their functioning. In addition, the deployment and the data model for 
semantics are shown and explained. 

For a better understanding of the changes made in this paper, it is necessary to 
explain key concepts from previous paper done and outlined in [29] [30]. Previous 
paper aimed at the construction and testing of modular data warehouses based on 
microservice architecture. This system introduced containerized data pipelines, 
which allowed easier data sharing between multiple different endpoints and 
containers designated for data processing and storing. The primary components of 
the processing pipeline included Data Loaders, Processors, and Savers. Each of 
these parts of pipeline are designed for a specific task, which are explained below: 

• Data Loaders were designed to download specific data (from APIs or other 
sources) or receive it through user input. 

• Processors containers received raw, unprocessed data and transformed 
them into a ready-to-store version. 

• Savers received processed data, determining where and how to store it 
while managing data storage. 
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Although the system worked as intended, a major drawback was its static 
architecture construction, which made changes to the system very difficult. Users 
had to identify the origin of the files they were uploading for successful processing. 
The system then works with the assumption that the data are of the origin, selected 
by the user. If the user does not know the origin or selects the wrong one, it creates 
errors and leads to data loss. The next problem is that the processing pipelines use 
a fixed architecture, lacking dynamic adjustments to satisfy diverse data needs. This 
is the challenge addressed in the current paper. 

 
Figure 2 

Sequence diagram which demonstrates flow of data in system 

4.1 Semantic Manager 

Central point of the newly introduced semantic layer is the semantic manager, 
which serves as the key point for all semantic management within the system. 
Thanks to the modular microservice architecture of the original data warehouse, this 
manager seamlessly integrates this layer into the solution as a new service (or 
containers in our case). The key difference between the original data warehouse and 
the new system using the semantic layer involves redirecting requests previously 
shared directly from data loaders to processors. Now, these requests are first routed 
to the semantic manager, which then constructs the best processing pipelines. This 
process is repeated for each request and creates a dynamic flow of data in the 
system, based on the identified supplier. This new processing flow is illustrated in 
Figure 3. 

The first data routing displays the original flow of the data in the application, where 
a fixed processing pipeline was used for the data flow. The lower data flow 
demonstrates the new approach used in this paper. The new service, semantic 
manager, is colored green and is placed after data collection (yellow service/s). This 
service in the processing pipeline is very important for semantics operation, as it 
has to occur as soon as possible after data loading to identify given data. 
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Figure 3 

Original static processing pipeline (upper) and new dynamic processing pipeline (lower) 

After successful identification of the received data, the next step for the semantics 
manager is to create an appropriate processing pipeline that has an optimal 
combination of best services and length. One of possible processing pipelines is 
mirroring the original static processing path, where data are flowing from the 
identification to processor, and from processing to storing. Other alternative 
options, colored blue, can bring other services into play, which can be placed at 
different places in the pipeline. This new pipeline can completely bypass 
processors, can be placed between them, or even can go directly to saver if that is 
desired behavior of specific data. Another flow option is represented by the pink 
service, which serves as the final step in the pipeline, providing an additional choice. 

Searching of correct data flows is based on provided parameters for request, which 
can be changed and selected by user, but need to be set in semantics as an option. 
Possible processing paths are defined in the data ontology, which is represented as 
a graph in Neo4j. 

This operation returns an array of conditions that should be fulfilled by the 
processing pipeline if possible. After that, the system produces all possible paths; 
for each path, an array of conditions is constructed, which are collected into an 
array, which is then iterated over, and checks how much of a requested conditions 
from request are inside of the given array. Counts the number of hits and stores the 
index of the array with most hits (hits will be explained later). The resulting path on 
given index is then returned for additional processing. 

4.2 Tag Manager 

This paper implements an alternative semantic approach, which is using tags. Tags 
are, in a very simple way, simple strings that are used as values for identification 
and recognition. They usually contain key entity characteristics they represent. 
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While it is preferred to have unique tags, it is not a strict requirement. The main 
advantage and significance of tags is in their count. More tags enable for more 
precise identification as a larger number of attributes can be matched. The bigger 
number of tags also comes at the price of higher memory and storage consumption. 

For this implementation, the system uses Redis as an in-memory storage solution 
because of its superior speed compared to traditional data storage. This choice is 
particularly advantageous, as it works with a relatively smaller amount of data 
stored in memory, minimizing the impact on overall memory consumption. When 
the application is not active, the data are persistently stored in a text file, which is 
loaded upon the application startup. The representation of the data is as follows: 

For this implementation, system uses Redis as an in-memory database, mainly due 
to its high processing speed because data are stored in the memory, not in the 
storage. This tool is very beneficial, mainly because the number of tags for suppliers 
is based on the number of suppliers, which are not an infinitely growing set of 
values. Data are loaded into Redis from the text file which contains Redis 
commands which are then executed. For example: 

HSET <id> name <name> tags <tags.....> 

The whole query is constructed as a full text search on supplierIndex where the tags 
field contains given attributes and the payload also has the attributes, return score, 
and also uses a special scorer named HITS_SCORER which is explained later.  
The query is then executed, and the results are processed. 

When it comes to the stop-words, systems approach is to not eliminate them. Stop 
words are something that usually occurs in the normal text, but this system works 
with the column headers and file types, which often do not contain stop words and 
automatic removal could potentially remove something important from the tag. 
Also, the index specifically requests HASH data format instead of JSON data 
storing, with "supplier" prefix for the identifier. At the end, the command setups the 
data scheme, which setups name field as TEXT and tags field as TAG field. 

System stores endpoints data in classical key-value format. This simple approach is 
based on idea that one endpoint has one condition that is specific for it and can be 
identified by that condition. This information enables more efficient structure in this 
key-value format 

One key part of the solution already mentioned before is custom scorer. Redis 
enables tag searching and also provides scoring for the obtained results. It offers 
multiple scorers, which can be used, but all of them are used for full text processing 
and things such as TF-IDF, which is default scorer, are not optimal for this task as 
it calculates many unnecessary operations and also lowers and boost score based on 
terms frequency, etc. which is opposite to what this system needs. 
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For this reason, the system has its own custom scorer named HITS_SCORER 
implemented in C. It uses payload option for data loading and it simply compares 
strings received in payload part and data loaded from Redis. 

5 Experiments and Evaluation 

The proposed evaluation examines the impact of the semantic layer on system 
resource utilization, performance, and accuracy. Performance tests analyze 
potential negative effects, ensuring implementation costs do not outweigh benefits. 

5.1 Testing Environment 

To ensure a consistent and reproducible evaluation, the experiments were conducted 
on a system with the following specifications. Table 1 outlines the key hardware 
and software parameters, including the operating system, CPU details, memory 
capacity, and Docker and Docker Compose versions. 

Table 1 
Testbed specification 

OS Ubuntu 22.04.4 LTS 
Architecture x86_64 
CPU Intel i5-7300HQ 
Cores 4 @ 3.500GHz 
Memory 16GB 
Docker version 26.0.0 
Docker-compose version 2.3.3 

5.2 Platform Performance 

The additional semantic layer brings new overhead to the system. In this part of the 
evaluation, the performance of the system is compared in setup with semantic layer 
and without semantic layer, between different semantic approaches (see Figure 4). 

Each group in the graph represents three tests for a specific data load, organized by 
series. In particular, the difference between the green and yellow bars, which signify 
processing times for uploading a single invoice (with green indicating the default 
system and yellow representing the semantic system using ontology), is relatively 
small. In this comparison, the difference is only one second, with the average 
processing time for the default system being 8 seconds and for the semantic system 
being 9 seconds. 
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Figure 4 

Processing time for default system setup and semantic data warehouse using ontology 

5.3 Platform Memory Utilization 

Resource utilization carried out on both semantic approaches used in the system. 
The results are compared among these approaches and also with the results gathered 
from the original data warehouse without the use of semantics. 

 
Figure 5 

Memory consumption of system over time in different configurations and different number of uploads. 
Vertical axis values are in megabytes and horizontal axis describes order of uploads. 

Figure 5 shows multiple lines with different colors and also two groups, one with 
crosses and one with dots or points. Lines with dots represent memory consumption 
for different setups of data warehouse and semantics, and both for a single uploaded 
invoice. The lines with crosses represent the same setups but for five uploaded 
invoices at once. The lowest line in the graph (purple) represents the data warehouse 
without any form of semantics and without additional containers running for 
semantics. The system in this configuration uses the lowest amount of memory 
through multiple uploads of one invoice. The system in such a setup increased its 
memory consumption by around 200 megabytes. The next blue line is for the same 
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setup, but this time 5 invoices are uploaded in each step. Memory requirements are 
higher, but this is for obvious reasons, as the system works with much more data, 
which consumes more memory. 

5.4 Evaluation of Dynamic Pipeline Construction 

This experiment evaluates the accuracy of semantic data understanding, a critical 
aspect of system functionality. If accuracy is insufficient, the system fails to operate 
correctly. The system assesses pipeline selection accuracy based on provided 
conditions, ensuring optimal processing for each semantic type. 

This subsection introduces conditions which are values that are passed to the system 
when receiving data files. They can represent options for the user to interact with 
the system; for example, when they want to send email, we represent this option 
with send_email string in the input field on the upload page. Conditions also 
represent marks given by the system to specific data types. For example, when users 
want the system to schedule CRON job when data are received, they can add this 
condition to the data node (in both Tags or Ontology) and as such it will 
automatically add itself to the system. 

The conditions are then used in the correct path creation/selection. Both ontology 
and tags use different approaches to pipeline creation/selection. Tags are using a 
much simpler approach where the processing path is not selected among existing 
options, but rather created based on the values received in the data recognition and 
conditions. Ontology, on the other hand, rather selects the best option based on 
identification and conditions. It holds pre-existing network of possible processing 
paths in graph. For identified supplier are then selected all possible paths that can 
be used. These are then compared, and the system selects best, based on the number 
of hits. This means that ontology can select processing pipeline that contains 
endpoints that are not in conditions or selected pipeline can miss some of these 
endpoints for situations where better processing pipeline is not possible. 

Figure 6 shows the experiment results. Each option is described with number and 
has two bars describing hits percentage for different values calculated and resulting 
(green) average of these two values. In this scenario, system has 7 possible paths. 
The numbers on the x-axis are used for describing the possible paths, as these would 
be very long for simple showing. 
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Figure 6 

Comparison of hits percentage for path conditions and input conditions (1 received from user) and their 
resulting average score 

Conclusions 

The integration of a semantic layer into microservice-based data warehouses shows 
a significant advancement in the automation and adaptability of data processing 
pipelines. By enabling context-aware service selection and reducing manual 
configuration, the system enhances both usability and operational efficiency.  
The paper presented and evaluated two semantic approaches: 1) ontology-based and 
2) tag-based. 

The evaluation demonstrated that while the semantic layer causes tolerable 
overhead, it offers considerable gains in pipeline flexibility and data recognition 
accuracy. The ontology-based method enables deeper semantic reasoning and 
precise workflow alignment, but it comes at the cost of increased system complexity 
and performance limitations, particularly due to the use of Neo4j as the backend. In 
contrast, the tag-based approach, though less expressive, proved to be lightweight 
and effective in typical usage scenarios. 

The experiments show that the choice of semantic backend has a significant impact 
on performance and scalability. Neo4j, while powerful for general-purpose graph 
processing, is not optimized for semantic reasoning and RDF triple management. 
Future work will address this limitation by exploring alternative triplestore systems, 
such as GraphDB or CosmoDB, which offer native support for SPARQL and 
enhanced inference capabilities. This improvement can optimize ontology-driven 
processing and increase the accuracy and efficiency of dynamic pipelines. 

While the paper is primarily focused on structured data sources such as invoices, 
the presented approach is modular and extensible. By incorporating metadata 
extraction tools like Apache Tika and expanding the semantic rules or tag sets, the 
system can be extended to accommodate unstructured or semi-structured data 
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formats such as PDFs, emails, XML documents, or sensor logs. Future work will 
explore dynamic recognition and processing of these formats, potentially 
integrating natural language processing (NLP) techniques for context extraction and 
semantic tagging. 
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