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Abstract: To realize point cloud segmentation of secondary lining in tunnel under 
construction, a roughness feature-based point cloud segmentation algorithm for secondary 
lining is developed in this paper. Preprocessing of raw scanned data enables the 
parameterization of the optimal voxel mesh size, roughness calculation radius and extraction 
threshold with algorithm experiments. Primary segmentation is performed by clustering 
under optimal parameters, and then the results of the primary segmentation are input as seed 
points for secondary segmentation. The effective segmentation rate is up to 99.25%. 
Comparison confirms that the performance of the proposed algorithm is superior to other 
similar algorithms, proving its’ practicality and feasibility. 
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1 Introduction 
The economic development experience of various countries around the world has 
attested to the necessity of a fast and smooth transportation network [1-3]. As the 
economy develops, a large number of countries have developed tunnel engineering, 
whose construction management has received extensive attention from specialists 
and scholars [4-6]. The New Austrian Tunneling Method (NATM) proposed in the 
1950s has been widely implemented in 70% to 80% of mountain tunnels in Europe 
after years of practice and promotion [7-9]. The secondary lining, as an 
indispensable component of the NATM tunnel, has also attracted a lot of attention 
[10-12]. 

With the continuous advancement of construction techniques and mechanization, 
the demand for intelligent tunnel construction is also increasing. Point clouds, as a 
three-dimensional (3D) visualization tool for describing the real-world 
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environments, have attracted great attention in computer vision field [13] [14].     
The significant advantages of point clouds in terms of fast acquisition speed and 
accurate geometric representation have led to increasing utilization of 3D point 
clouds for a variety of tasks, including construction quality inspection and progress 
tracking [15] [16]. In addition, point clouds can provide detailed spatial information 
and point features for accurate and refined object reconstruction and segmentation 
[17]. First of all, point cloud data can provide high-precision three-dimensional 
spatial information. By fine segmentation of the point cloud data, the lining 
thickness can be determined more accurately, thus improving the lining quality. 
Second, the point cloud information can more accurately determine the shape and 
features inside the tunnel, thus improving the accuracy of positioning and sizing. 
Then, the quality of the lining can be assessed more accurately, such as the 
consistency of the lining thickness and the flatness of the tunnel interior, thus 
improving the quality of the project. Finally, through the fine segmentation of the 
point cloud data, hidden hazards inside the tunnel, such as cracks, corrosion, and 
exposure of steel reinforcement in the inner wall of the tunnel, can be more 
accurately identified, thus improving the safety of the project. Therefore, it is 
extremely crucial to segment the secondary lining of tunnels under construction 
through point cloud data, which provides the basis for intelligent detection of a 
series of problems that may arise during the construction of secondary lining. 

Various inter-enclosed support objects in complex tunnel environments, such as 
trolleys, pipelines and so on, generally generate a large number of interfering point 
clouds that interfere with the segmentation of the secondary lining. Some reported 
denoising methods are positive for removing the obvious noise and outliers [18] 
[19], but it is still difficult to minimize the influence of ancillary structures in tunnel 
on segmentation. For tunnel lining segmentation, least square method or Ransac 
[20] [21] can be applied to obtain the tunnel profile by fitting cylinders [22] [23]. 
This is only applicable to shield tunnels with regular cross-sectional profiles, 
whereas the profiles of highway tunnels are in three-centered circles. The actual 
situation is not exactly the same as the design drawings, making it difficult to 
determine the formulas and parameters to be used for fitting. The region growth 
algorithm [24] can also be employed for region segmentation of the tunnels [25]. 
However, the curvature, which is a key factor affecting the region growth, does not 
effectively distinguish between initial support and secondary support. A large 
number of point cloud deep learning methods [26-28] have been proven to be highly 
effective for classification and segmentation tasks of the point clouds, but they still 
suffer from the problems of limited measurement data and unknown actual 
segmentation results when dealing with larger outdoor objects such as the tunnels 
under construction. Currently, most of the segmentation tasks for tunnels are 
concentrated in segment linings, lines, contact networks and so on in subway 
tunnels [29-31]. In these studies, the segmented tunnel environments were more 
regular and well-organized than the tunnels under construction, and the point cloud 
is mainly the structural part of the tunnel without a large number of interference 
point clouds. 
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This paper proposes a roughness, feature-based segmentation algorithm, for 
secondary lining point clouds of the tunnels under construction. The raw scanned 
data are preprocessed, where the optimal voxel mesh size, roughness calculation 
radius and extraction threshold are determined by algorithm experiments. Primary 
segmentation is performed by clustering under optimal parameters, and then the 
results of the primary segmentation are input as seed points for secondary 
segmentation. The developed algorithm is evaluated and compared with similar 
algorithms, and it is confirmed that the algorithm reduce computational complexity 
as well as provide good applicability and segmentation integrity for complex tunnel 
scenarios. 

2 Data Acquisition and Preprocessing 
In view of the large amount of the point cloud scenario data obtained through mobile 
scanning and complex tunnel environments, a roughness feature-based fast 
segmentation algorithm for secondary lining point clouds is proposed. The specific 
implementation scheme is described as follows, obvious outliers and noise points 
in the point cloud data are removed with software. During the analysis process, the 
points such as silhouettes, vehicles, etc. that appear during the scanning process are 
considered as noisy points that have nothing to do with the structure. After the point 
cloud data is solved, there are some points outside the tunnel which are considered 
as outliers. 

2.1 Acquisition of Experimental Data 
The laser 3D scanning technique is applied to acquire point cloud data in a highway 
tunnel under construction in Shandong Province, China. For point cloud data 
acquisition, a Hovermap mobile 3D laser scanner is used for tunnel scanning, and 
the main procedures involve scanning route setting, point cloud data collection, on-
site data inspection, data export and backup. The maximum scanning distance of 
the scanner is 100 m, with a distance measurement accuracy of ±5 mm and a 
measurement range of 360°. 

A typical tunnel scenario with complex structures and machinery is selected from 
the scanned tunnel point cloud data to for investigation of the applicability of the 
algorithm. The scenario includes various lining situations at different periods, such 
as the initial support with steel mesh, the initial support blocked by the trolley, the 
initial support and the secondary lining, as well as various machinery such as the 
trolley, vehicles and construction equipment. When evaluating the algorithm, it is 
necessary to know the number of points in the original secondary lining in Fig. 1. 
In view of this, Cloud Compare software is used to manually segment each structure 
and calculate the number of points in the secondary lining, initial support and other 
parts as the evaluation indicators for subsequent algorithms. 
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The total number of point cloud data after preprocessing the raw data is 1,834,237, 
where the numbers of points in the initial support, secondary lining, mechanical 
vehicle and road surface are 814,299, 394,605, 126,020 and 499,313, respectively. 

 
Figure 1 

Composition of Point Cloud Data 

2.2 Data Preprocessing 
The purpose of data preprocessing is to remove shadow points and noise generated 
by the movement of vehicles and personnel during mobile scanning, and to improve 
the accuracy and availability of point cloud data in feature extraction. 3D point 
clouds are usually characterized by complex, multidimensional, and large-scale 
features, while the additional data unrelated to original objects are easily generated 
during the acquisition process due to the complex environment. Therefore, special 
processing of point clouds, such as data cleaning, is crucial for effective acquisition 
and accurate analysis. The data cleaning of the point clouds typically involves 
filtering and removal of unnecessary, occluded or erroneous points. The next step 
after removing the noise is to clarify the point cloud information in the point cloud 
data that is not related to the tunnel structure, such as the steel frame structure, 
construction vehicles, and construction workers, as shown in Figure 2. 

 
Figure 2 

Data preprocessing manual filtering 

In this paper, some points that appear during scanning are considered that don't 
matter to the structure such as silhouettes, vehicles, etc. as noise points. Then after 
the point cloud is solved there are some points on the outside of the tunnel, which 
are considered as outliers, as shown in Figure 3. 
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Figure 3 

Data preprocessing of Outlier 

3 Algorithm 

3.1 Algorithm Feasibility Analysis 

The normal vectors of the point clouds of the initial support and secondary lining 
are calculated, and they are then rendered based on the normal vector values.         
The normal vectors along the X, Y, and Z coordinate axes of the point clouds of the 
initial support and the secondary lining are analyzed to determine their differences 
in roughness. 

Figure 4 presents the normal vectors of the point cloud data in the X, Y and Z 
directions. It can be seen that the normal vectors of the initial support and secondary 
lining differ in different directions. Figure 5 illustrates the tunnel orientation 
roughly along the X-axis, where the normal vector values of the initial support and 
secondary lining are concentrated between -0.15 and 0.15 while those of the initial 
support are mainly concentrated between -0.4 and 0.3. As the tunnel direction is 
mainly along the X-axis, the components of the point cloud data on the X-axis are 
smaller. However, due to the unevenness of the secondary lining surface, its Nx is 
larger with a wider distribution. The normal vectors of the point clouds along the 
Y-axis direction in the initial support change uniformly along the circumference of 
the tunnel; however, the normal vectors of the secondary lining on tunnel sidewalls 
change abruptly. Therefore, a peak in the range of 0.8 to 1.0 appears in figure (c), 
whereas no such change appears in figure (d). This also indicates that the Ny mainly 
characterizes the changes on the tunnel sidewalls, and the initial support causes an 
abrupt change in Ny as a result of the concavity. The same situation exists for the 
normal vectors in the Z-axis direction, where the secondary lining varies uniformly 
along the circumference of the tunnel and the initial support varies abruptly at the 
top of the tunnel. Namely, there is a peak on the right side of figure (e), while there 
is no such peak in figure (f). The above analysis determines that there is a roughness 
difference between the secondary lining and the initial support in point cloud data. 
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This difference can be shown by the normal vectors, determining the feasibility of 
the subsequent algorithms. 

 
Figure 4 

Tunnel point clouds under three normal vector components 

          
（a）                                                                           （b） 
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）                                                                           
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（e）                                                                           （f） 

Figure 5 
The normal vector components of the point clouds in initial support and secondary lining: (a) initial 

support Nx, (b) secondary lining Nx, (c) initial support Ny, (d) secondary lining Ny, (e) initial support 
Nz, (f) secondary lining Nz 

3.2 Downsampling and Initial Segmentation 
3D point clouds often contain a large amount of redundant data, which requires a 
lot of computation and takes a long time to process directly. Therefore, it is 
necessary to downsample them. Downsampling is also a key step in the point cloud 
preprocessing. This study performs downsampling with a voxel grid method and 
discretizes the computed bounding box of the point clouds into small voxels.         
The length, width, and height dimensions of voxels can be set parametrically, or the 
number of voxels in each of the three directions can be specified to obtain a set of 
points that fall within each voxel. One sampled point is taken from each voxel to 
replace the original point set. It is characterized by high efficiency, relatively 
uniform distribution of sampling points and controllable indirect spacing of 
sampling points. 

In this study, the point intensity is reduced by downsampling to save the 
computational time. However, reducing the point intensity also leads to a partial 
loss of the point cloud data. To reduce the impact of missing point clouds on 
secondary segmentation, the optimal point intensity of the algorithm, i.e., the 
average distance between point clouds, is determined through algorithm 
experiments in the follow-up works. The point intensity of the point clouds can be 
indirectly controlled by dividing the voxel grid, which improves the processing 
efficiency while ensuring the accuracy of segmentation. 

Roughness in present study is defined as: for each point, the value of ‘roughness’ 
was equal to the distance between the point and the best fit plane in a certain 
neighborhood. The best fit plane is determined with the least squares method. To 
obtain unknown parameters in the least squares method, 3D data of the plane are 
assumed, and the plane is defined as. 
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ax+by+cz+d=0   (1) 

where the a, b, c, and d are all the plane parameters. 

For all point clouds, in formula (2) a Covariance matrix is constructed: 

M3×3= 1
m
∑ (pi-p�m

i=1 )(pi-p�)T     (2) 

p=
1
m
� pi

m

i=1

 (3) 

where pi∈P；𝑝𝑝 is the center point of all points in point set P. 

The Eigenvalues and eigenvectors of covariance M are calculated according to 
formula λV=MV, where λ=(λ0,λ1,λ2) is the eigenvalue of M and V=(V0,V1,V2) is 
eigenvectors corresponding to λ. The four parameters a, b, c and d are calculated by 
obtaining the minimum value of each eigenvalue to obtain the best fitting plane. 
And the distance from the point to the plane is calculated as a rough value in present 
study. 

After downsampling, each point in the point clouds corresponds to a roughness 
value after roughness calculation as shown in Figure 6. The roughness values of the 
secondary lining are relatively small and uniform, while those of the initial support 
are relatively large and partially non-uniform. Point clouds with roughness values 
within a certain range are roughly extracted, where the most of the secondary lining 
point clouds are preserved and the remaining point clouds of the initial support, 
ground and trolley are fragmented. Considering these differences between the 
coherence and incoherence, fragmentation and uniformity, Euclidean clustering are 
used to segment secondary point clouds from all point clouds to achieve initial 
segmentation in the algorithm. 

  
Figure 6 

Schematic diagram of roughness principle 
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3.3 Secondary Segmentation 
Generally, the segmentation task is to perform further processing of the initial 
results such as establishment of the model, acquisition of detailed parameters and 
other subsequent steps. For the smooth running of the subsequent tasks, it is very 
important to avoid data loss caused by segmentation as much as possible, so that 
more details in the raw data can be preserved. In the previous initial segmentation, 
the segmented objects are the downsampled point clouds, so the segmentation 
results obtained have a relatively small number of point clouds that lack many 
details and even show some holes. To obtain the secondary point clouds close to the 
raw scanning data, a secondary segmentation is conducted. 

Available algorithms usually process up-sampling with rich point cloud intensity, 
but the up-sampling is often calculated and fitted by the relationship of surrounding 
points, which does not recover the varying scenarios very well. Also, the up-
sampling is usually performed without the raw data. This study was inspired by the 
clustering algorithm that uses seed points to segment the required point clouds.     
The point clouds obtained from the first segmentation are used as the seed points 
for further segmentation by searching the surrounding points through the kd-tree. 
To attain as many secondary point clouds as possible, the search radius is usually 
set to exceed the distance between the seed points, which may lead to duplicate 
point acquisition. The results obtained from the second segmentation are filtered on 
one side, and the duplicate points are deleted, as shown in Figure 7 

 

Figure 7 
Schematic diagram of secondary segmentation 

4 Experiment Result 

4.1 Optimal Point Density 
The work in this section is performed to improve computational efficiency.            
The complexity would be greatly increased if the point cloud data are not 
downsampled. Determining a reasonable downsampling parameter, i.e., the final 
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point density, is crucial because point intensity not only affects computational 
efficiency but also the subsequent segmentation. Therefore, the data should not be 
too dense or sparse. The present study changes the point intensity or average point 
spacing by setting the size of the voxel grid. The original point intensity is about 
0.03 m, and the voxel grid is set between 0.04 -0.10 m, with an increase of 0.01 m 
each time. A total of 7 sets of experiments are conducted. 

Table 1 illustrates the average point spacing, the number of filtered secondary 
points, the number of secondary points obtained in a single segmentation and the 
number of over-segmented points under 7 voxel grids. As the voxel grid increases, 
the number of points decreases, resulting in a decrease in the number of segmented 
points. The effectiveness of the segmentation cannot be confirmed by the number 
of points alone. Therefore, the ratio of the proportion of the rear secondary point 
number to the original secondary point number to the proportion of over-
segmentation point number to the original over-segmentation point number is 
defined as the reduction rate of over-segmentation. The larger the ratio, the less 
pronounced the over-segmentation situation. The original number of secondary 
points is 394,605, while the original number of over-segmentation points is 4,460. 
The raw over-segmentation refers to the direct segmentation of the raw point cloud 
data without voxel filtering and secondary segmentation. This ratio can reflect the 
situation of over-segmentation under each voxel grid. It can be seen from Figure 8 
that the effect of voxel filtering on the effective segmentation rate is relatively small, 
remaining around 93%. Only when the voxel grid is 0.10, there is a significant 
decrease. However, the over-segmentation gradually decreases with the increase of 
the voxel grid. The over-segmentation significantly decreases when the voxel grid 
is 0.09, at which point the effective segmentation rate also reaches a maximum 
value of 93.22%. 

 
Figure 8 

Effective segmentation and over-segmentation reduction under different voxel grids 
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The above experiments indicate that the optimal voxel grid edge length is 0.09 m, 
at which point the point intensity or average point spacing is 0.0643. The subsequent 
parameterization is based on a 0.09 m voxel grid. 

Table 1 
Segmentation under Different Voxel Grids 

Size Average  
point spacing 

SL 
(Voxel 

filtering)  

SL 
(Roughness 

filtering) 

Initial  
segmentation 

Over 
segmentation 

0.04 0.0389 191,274 181,672 180,783 2,560 
0.05 0.0432 145,614 137,982 137,180 1,715 
0.06 0.0483 112,085 106,139 105,133 1,256 
0.07 0.0533 87,487 82,763 82,092 787 
0.08 0.0589 69,473 65,727 64,665 594 
0.09 0.0643 56,303 53,345 52,763 220 
0.10 0.0696 46,193 43,785 38,472 0 

4.2 Rough Extraction 
The work in this section is to remove the relatively rough parts in point cloud data. 
The roughly extracted point clouds retain most of the secondary point clouds, and 
this part of the point clouds is relatively dense without any missing points. However, 
the point cloud data at the initial support may be lost, due to the fact that the 
algorithm removes this part of the point clouds because of its large roughness. 

There are two main factors that affect roughness screening: roughness calculation 
radius and roughness screening threshold. The roughness calculation radius 
represents the calculation radius of the neighboring point cloud fitting plane, and 
the roughness screening threshold is the distance from the points participating in the 
fitting plane to that plane. The parameters of the fitting plane are varied at different 
radii, and the distances from the neighboring point clouds to the plane also change 
accordingly. To determine these two parameters, algorithm experiments are 
conducted, where five different radii of 0.1, 0.15, 0.2, 0.25 and 0.3, are employed; 
and the optimal roughness radius and roughness screening threshold are determined 
by analyzing the optimal roughness threshold in each case. 

Tables 2, 3 and 4 present the numbers of point clouds obtained by extracting and 
segmenting different roughness calculation radii with roughness extraction 
thresholds of 0.01, 0.02 and 0.03. The point cloud data utilized for roughness 
calculation are those previously obtained at the optimal point intensity, i.e., the point 
clouds filtered from the raw data at a voxel grid of 0.09. The total number of points 
is 606,195 and the number of secondary contrast points is 56,303. The ‘/’ in the 
table indicates that the secondary point clouds are not yet fully segmented or the 
over-segmentation is too severe. 
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Table 2 
Number of extracted and segmented points with a roughness threshold of 0.01 

Radius Total number of 
points 

Number of secondary lining 
points 

Initial 
segmentation 

Over-
segmentation 

0.10 380,620 48,718 48,062 562 
0.15 345740 48,092 46,448 36 
0.20 302,946 47,406 45,166 0 
0.25 275425 46,766 44,888 0 
0.30 256,713 46,012 44,008 0 
0.35 240,533 44,928 42,451 0 

Table 3 
Number of extracted and segmented points with a roughness threshold of 0.02 

Radius Total number of 
points 

Number of secondary lining 
points 

Initial 
segmentation 

Over-
segmentation 

0.10 462,185 53,886 / / 
0.15 472,637 53,830 54,238 844 
0.20 429,963 53,359 53,032 274 
0.25 396,835 52,893 52,487 169 
0.30 374,259 52,465 51,923 0 
0.35 352,963 51,955 51,396 0 

Table 4 
Number of extracted and segmented points with a roughness threshold of 0.03 

Radius Total number of 
points 

Number of secondary lining 
points 

Initial 
segmentation 

Over-
segmentation 

0.10 490,930 54,613 / / 
0.15 535,788 54,865 / / 
0.20 504,899 54,505 55,251 1,027 
0.25 475,140 54,128 54,152 581 
0.30 453,471 53,777 53,766 519 
0.35 432,602 53,450 53,429 498 

Figure 9 presents the proportion of the extracted secondary point clouds to the 
overall point clouds for different calculation radii at roughness levels of 0.01, 0.02, 
and 0.03, while the original unextracted proportion was 9.29%. It can be seen that 
the overall trend of the proportion of the secondary point clouds increases with the 
increase of the calculation radius, while it decreases with the increase of the 
threshold value for the same calculation radius. Figure 10 presents the effective 
segmentation rates for a single segmentation at different computational radii with 
roughness values of 0.01, 0.02 and 0.03. The effective segmentation rates at 
roughness threshold of 0.01 are significantly lower than those of the 0.02 and 0.03, 
and there are more under-segmentation cases. However, at a roughness threshold of 
0.03, there are more over-segmentation and ineffective segmentation cases. 
Therefore, the initial segmentation that can be used for subsequent secondary 
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segmentation should ensure that there are no over-segmentations and obvious gaps 
in space. From Figures 9 and 10, as well as Tables 2, 3 and 4, it can be inferred that 
the more suitable parameter combinations are 0.02-0.30 or 0.02-0.35, where the 
effective segmentation rate is higher for 0.02-0.30 than for 0.02-0.35. Therefore, 
the optimal parameter combination is 0.02-0.30. 

                                            
Figure 9 

Proportion of extracted secondary point clouds 
to overall point clouds under different radii 

Figure 10 
Effective segmentation rates for a single 

segmentation under different radii 

4.3 Secondary Point Cloud Segmentation 

 
Figure 11 

The segmentation results 

The work in this section is to segment the secondary contrast point clouds in the 
point cloud data prior to voxelization. The optimal primary segmentation point 
clouds are determined by experimenting with the algorithm described above.        
The results of the primary segmentation are input into the raw data as seed points 
(i.e., the red point clouds in figure 11) for secondary segmentation. Three different 
calculation radii of the 0.1 m, 0.2 m and 0.3 m, are employed for secondary 
segmentation. The segmentation results are shown in the blue point clouds in figure 
11, Some holes appear in the segmented point clouds at a radius of 0.1 m. The point 
clouds after segmentation at a radius of 0.3 m exhibit over-segmentation, with some 
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noise at the edges. These noise points are caused by the mobile scanning of the 
connection between the secondary lining and the initial support. The segmented 
point clouds with a calculation radius of 0.2 m have no obvious hole missing, and 
the impact of minimal noise can be ignored. It basically meets the requirements of 
the segmentation task, and the effective segmentation rate reaches 99.25%. 

5 Discussion 

5.1 Algorithm Evaluation and Comparison 
To test the segmentation performance of the proposed algorithm for binary 
structures, four evaluation indicators of the accuracy, recall, F1 score, and union 
intersection [32] (IoU) are applied based on the true positive (TP), false positive 
(FP), true negative (TN), and false negative (FN). They are defined as follows: 

Precision=
TP

TP+FP
 (4) 

Recall=
P

TP+FN
 (5) 

F1-score=
2×Precision×Recall

Precision+Recall
 (6) 

IoU=
TP

FP+TP+FN
 (7) 

Three algorithms are available for comparison: original roughness segmentation (no 
progressive aspect filtering, no secondary segmentation), surface curvature 
algorithm and DoN algorithm. 

Surface curvature is a concept that describes the degree of variation of a point cloud 
surface based on the surface eigenvalues, which is different from the mathematical 
meaning of curvature. The Covariance matrix in Eq. (2) is decomposed into 
eigenvalues to obtain the eigenvalues of M. If λ0 ≥ λ1  ≥ λ2 is satisfied, the surface 
curvature of point P is: 

σ=
λ2

λ0+λ1+λ2
 (7) 

where a smaller value of σ indicates a flatter and smoother neighborhood, while a 
larger value of σ indicates greater fluctuation in the neighborhood. 

The DoN (Differential Operator Network) feature states that the surface normal 
vector estimated for a given radius can reflect the intrinsic geometric features of the 
surface. Therefore, this segmentation algorithm is based on normal estimation and 
requires the computation of the normal estimation of a point in the point clouds. 
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Selecting different support radii for a point in the point clouds can result in different 
estimations of the normal. 

In this section the present algorithm is compared with three more widely used 
algorithms. The evaluation results of each algorithm are shown in Table 5, and the 
segmentation effectiveness of each algorithm is presented in Figure 12. It can be 
seen from Table 5 and Figure 12 that the original roughness algorithm and DoN 
algorithm suffer from severe over-segmentation problems, while the surface 
curvature algorithm undergo edge under-segmentation problems. The total number 
of the test point clouds is 14 million, and the total length of secondary lining is more 
than 120 m. The effect of long-distance segmentation is shown in Figure 13.              
In Figure 14, the quantity of point clouds processed per minute serves as the metric 
to assess or quantify the efficiency of the chosen algorithms. 

Table 5 
Evaluation Results of Each Algorithm 

 TP FP FN TN Precision Recall F1-
score IoU 

Ours 391,349 324 3,256 1,439,308 0.9925 0.9917 0.9954 0.9909 
Original 

roughness  383,275 6,198 11,330 1,433,434 0.9841 0.9713 0.9776 0.9563 

Surface 
variation 378,109 0 16,496 1,439,632 1 0.9582 0.9787 0.9582 

DoN 316,082 4,673 78,523 1,434,959 0.9854 0.8010 0.8837 0.7916 

           

                  （a）Ours                                       （b）Original roughness 

           

（c）Surface variation                       （d）DoN 

Figure 12 
Segmentation Effect 



T. Zhang et al. A Roughness, Feature-based Algorithm of Point Cloud Segmentation  
 of the Secondary Lining in NATM Tunnel 

‒ 208 ‒ 

 

Figure 13 
Long distance secondary lining segmentation effect 

 
Figure 14 

Comparison of Algorithmic efficiency 

5.2 Engineering Applications 
The method proposed in this paper can be used to segment the secondary lining 
point clouds without noise and allowing the number of points close to the raw data. 
Visualization and management of secondary lining progression and construction are 
of great importance in engineering. Therefore, the advancement information of the 
secondary lining is extracted. 

The extraction of advancement information mainly includes: a) projecting the 
secondary point clouds towards the xoy plane; b) Extracting linear regions from 
projected point clouds; c) performing the polyline fitting for the extracted linear 
region; d) calculating the length of the obtained multiple branch lines and using the 
average value as the advancement distance. The extraction effectiveness and 
process are shown in Figure 15. The final extracted advancement distances are 
12.18 m and 12.17 m, with an error of about 0.8% compared to the actual 
advancement distance. Therefore, the extracted advancement information is valid. 
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The extraction of advancement information mainly includes: a) projecting the 
secondary point clouds towards the xoy plane; b) Extracting linear regions from 
projected point clouds; c) performing the polyline fitting for the extracted linear 
region; d) calculating the length of the obtained multiple branch lines and using the 
average value as the advancement distance. The extraction effectiveness and 
process are shown in figure 15. The final extracted advancement distances are 12.18 
m and 12.17 m, with an error of about 0.8% compared to the actual advancement 
distance. Therefore, the extracted advancement information is valid. 

 
Figure 15 

Extraction of advancement information 

Conclusions 

This paper proposes a roughness-based point cloud segmentation method.              
The optimal voxel parameters, roughness calculation radius and threshold are 
determined through algorithm experiments. The influence of parameters on the 
extraction and segmentation is analyzed. The primary segmentation is performed to 
primarily obtain the secondary lining point clouds; thereafter, the complete 
secondary lining point clouds are acquired through secondary segmentation.          
The algorithm effectiveness is evaluated and compared through the engineering 
application. The following conclusions are drawn:  

(1) The analysis of the raw data indicates different differences in the normal vector 
components of the primary and secondary contrast point clouds on the three 
coordinate axes after laser radar scanning. The normal vectors of the secondary 
contrast point clouds vary uniformly while the normal vectors of the primary 
support and secondary lining point clouds vary abruptly. The analysis confirms that 
there are roughness differences between the secondary and primary contrast point 
clouds in the point cloud data. 

(2) The key parameters including the optimal point intensity for segmentation, the 
calculation radius and threshold of the roughness extraction in the first 
segmentation, and the segmentation radius in the second segmentation are 
determined through algorithm experiments. The selected optimal parameters 
improve the algorithmic efficiency and segmentation accuracy. 
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(3) The proposed algorithm is evaluated and compared by using the accuracy, recall 
rate and F1 score as evaluation indicators. Compared with the original roughness 
and similar algorithms, the developed algorithm offers the best segmentation 
performance, with 99.25% accuracy and about 5.8-million-point clouds processed 
per minute. 
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