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Abstract: Crack detection is critical for guaranteeing the safety of bridges, railways, and 
other infrastructures; however, it is a difficult task, particularly for tunnels. Tunnel lining 
images are primarily acquired using vision sensors, and cracks typically appear 
throughout an entire image. For crack detection using convolutional neural networks, the 
recognition accuracy is unsatisfactory when the cracks are at the edge of the image. Hence, 
an image preprocessing method is proposed to process railway tunnel data. In this method, 
the relative position of cracks in an image is changed by adding different sizes of borders 
to the crack images, and four different detection models are used for training to examine 
the effectiveness of the preprocessing method. Experimental results show that the proposed 
preprocessing method achieves better detection results for all four models. In the custom 
dataset, the border size is set to 1/9 of the original image size, which is the most effective 
size for improving edge crack recognition, where a maximum improvement of 8.4% 
compared with the control group is achieved. Additionally, black pixels (pixel value 0) are 
used to fill the border, which is better than using white pixels (pixel value 255). 
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1 Introduction 
Cracks are typical defects in road tunnels. Cracks not only affect the structural 
safety of tunnels, but also cause other problems, such as water seepage and 
corrosion of metal components [1, 2]. Crack detection is crucial for maintaining 
structural safety and infrastructure reliability. Classical manual crack-detection 
methods are time-consuming, laborious, dangerous, and subjective [3-5], which 
results in high maintenance costs, low maintenance efficiency, and high safety 
risks. Currently, the method of detecting cracks in tunnels by installing cameras 
on mobile platforms, such as cars and trucks, is the main detection method [6-10]. 
However, this detection method causes problems, such as a large data volume and 
the random distribution of cracks in the images. Tunnel inspection allows more 
than 10,000 images to be inspected per kilometer, and the manual naked-eye 
observation method can no longer complete the identification of tunnel crack 
images. 

The quality of tunnel detection image data varies significantly depending on 
several factors, such as the lighting conditions and the lining surface color inside 
the tunnel. Numerous studies have shown that conventional image processing 
algorithms represented by a grayscale threshold [11], edge detection [12], wavelet 
transform [13], etc., are not suitable for crack detection in complex scenes inside 
tunnels [14]. In recent years, deep convolutional neural networks have 
demonstrated strong competitiveness in image classification, object detection, and 
image segmentation [15-17], as verified from the ImageNet large-scale visual 
recognition challenge [18]. Consequently, many excellent deep convolutional 
neural network models have been developed, such as AlexNet [19], GoogLeNet 
[20], VGG Net [21], and ResNet [22], whose performances are equivalent to or 
better than that of humans. Owing to such achievements, deep convolutional 
neural networks have been widely used in infrastructure disease detection. 
Dorafshan [23] compared the performances of conventional edge detection 
methods and deep convolutional neural networks on concrete-structured datasets 
and demonstrated the superior performance of deep convolutional neural networks 
in managing complex scenes. Ling [24] proposed a novel network architecture 
known as FPHBN, which integrates contextual information into low-level features 
in a feature pyramid configuration to perform crack detection and balances the 
contribution of simple and complex samples to the loss by layering sample 
weighting during training. Liu [25] proposed a two-stage convolutional neural 
network-based pavement crack detection and segmentation method, first using the 
YOLOv3 network for crack detection and then the U-Net for crack segmentation. 
Shen [26] used a fully convolutional neural network to perform a pixel-level 
segmentation of dense cracks using a modified fully convolutional neural network 
CrackSegNet, which comprises a backbone network, dilated convolution, spatial 
pyramid pooling, and skip connection modules. 
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These training strategies or deep convolutional neural networks allow one to 
effectively identify cracks at the center of an image. However, in the actual tunnel 
detection process, numerous cracks are located at the edge of an image, and the 
accuracy of the existing algorithms in identifying these cracks is unsatisfactory. 
Therefore, an image preprocessing method for edge crack recognition is proposed 
herein. Specifically, this method is used to change the relative position of edge 
cracks in an image, highlight the target information features, and ease the 
subsequent analysis and application of the image. 

2 Related Studies 

2.1 Network Architecture 
The initial breakthrough in deep learning applied to object detection was achieved 
using ImageNet classified pretrained fine-tuned networks [27]. The feature 
learned in the pretraining task can convey useful information to the object 
detection task and then fine-tune the model without requiring a significant amount 
of training data. Pretraining has demonstrated excellent predictive performance for 
many tasks, including object detection, image segmentation, and action 
recognition. 

YOLOv5 [28] is the latest version of the YOLO [29] family of algorithms 
proposed in 2020 to further optimize the speed and accuracy of object detection 
based on YOLOv4. To accommodate different scenarios, four pretraining models 
for YOLOv5 were released: yolov5s, yolov5m, yolov5l, and yolov5x.                
The yolov5s pretrained model, which contains 1001 convolution kernels and 12 
residual components, is only 14.4 M, and features a width factor and depth factor 
of 0.5 and 0.33, respectively. 

 
Figure 1 

YOLOv5 network architecture 
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Figure 1 shows the network architecture of YOLOv5. For the backbone of 
YOLOv5, focus and CSP structures are used to improve the feature extraction 
speed and accuracy, whereas SPP and FPN+PAN modules are used to enhance the 
feature fusion capability [30]. The prediction frames of YOLOv5 features three 
sizes, which is the same as the case of YOLOv4. Because the input size is 
640×640, the parameters of the detection head in the YOLOv5 measures 
80×80×18, 40×40×18, and 20×20×18. 

2.2 Activation Functions 
The activation function is an important component of convolutional neural 
networks and has been shown to be key for achieving high performance in a wide 
range of tasks. It determines whether to activate a section of the neuron in the 
neural network and conveys the activation information to the next layer of the 
neural network. Therefore, the selected activation function significantly affects the 
training dynamics and performance [31]. To efficiently train the model and enable 
more accurate predictions on custom datasets, well-established popular activation 
functions, including SiLU, tanh, ReLU, and LeakyReLU, were configured for the 
training set. The selected activation function functions are described in detail 
below. 

SiLU [32] is the most widely used class of activation function and is expressed as 
shown in Equation (1). Similar to other well-established activation functions, it 
can be easily implemented in the PyTorch [33] framework using wrapped code. 
Specifically, it features upper and lower bounds in the range (0, 1). Based on 
training experience, better prediction results can be obtained using the SiLU 
activation function; however, it is susceptible to overfitting. Although SiLU has 
been successfully used in the YOLOv5 model, a significant amount of data are 
required to train the model to reduce overfitting. Thus resulting in higher 
computational costs and a longer training time, which implies that it may not be 
the most suitable activation function on the feature dataset. 

( ) ( )f x x xσ= ⋅  (1) 

where ( ) ( ) 1
1 xx eσ

−−= + is the sigmoid function. 

The mean value of the output of Tanh is zero, which allows the network to 
converge faster and reduces the number of iterations, as expressed in Equation (2). 
However, when the input values deviate significantly from the coordinate origin, 
the output is almost smooth and has a small gradient. Meanwhile, negative inputs 
are strongly mapped to negative values, and zero inputs are mapped close to zero, 
which is not conducive to updating the weights during the backpropagation. 
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The ReLU [34] was proposed by Nair and Hinton. It solves the problem of 
gradient disappearance in tanh back propagation and improves the overall 
performance of a network. The ReLU is expressed as shown in Equation (3). 
Compared with SiLU and tanh, which requires exponential computation, the 
ReLU only determines the relationship between the magnitude of the input values 
and 0; therefore, it achieves a simpler forward inference and backpropagation in a 
model. However, the ReLU generates a zero gradient for all negative values of the 
input, where some important features in the negative values are disregarded; 
consequently, the permanent death of neurons occurs and the network fails to 
update appropriately during the backpropagation. 

( ) ( )0,f x max x=  (3) 

LeakyReLU [35], which is developed by Maas and Hannun, solves the problem of 
gradient disappearance and maintains the update of weights during the 
propagation. The alpha parameter ensures that the gradient does not approach zero 
throughout the training process, thus improving training performance.               
The LeakyReLU is expressed as shown in Equation (4). 

( )
, 0
, 0

x x
f x

x xα
>

=  ≤
 (4) 

2.3 Proposed Method 
During the actual detection process, cracks at the edge of the image were not 
easily detected, and the closer the relative position to the center of the image, the 
higher was the confidence level of the detection results. The basic idea of the 
method proposed herein is to highlight the features of the target information by 
changing the relative position of the crack region in the image such that the cracks 
are more concentrated in the center of the image. Therefore, a preprocessing 
method to add borders to an image is proposed herein. The steps involved in the 
preprocessing method are as follows: 

1) The images in the dataset are converted to grayscale and the size information of 
each grayscale image is obtained. 

2) The size of the border to be added is set based on the size information of the 
grayscale image. 

3) The target position information is regenerated based on the relative position 
relationship. 

4) The added border is filled with pixel values of 0 (black) and 255 (white). 
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Figure 2 

Plots of different activation functions 

3 Experimental Design 

3.1 Data Preparation 
We established a road tunnel lining image dataset to perform training and 
validation. The dataset comprises a Crack Forest Dataset [36] and lining images 
obtained from an actual tunnel; the images contain a crack object. To avoid 
overfitting during training, image enhancement including flipping and rotation 
was performed on the dataset. Before training, the image data were manually 
labeled, and some of the annotated images were used as the training set for 
training. Whereas the remainder were, as the validation set, to evaluate the 
training accuracy by comparing the prediction results with the results of the 
training model. We used the well-established labelme tool to label 1744 images 
and then segmented the dataset randomly into two groups: one with 1494 images 
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as the training set, and one with 250 images as the validation set. The labelme 
labeling tool yields outputs in the JSON format, whereas YOLOv5 requires txt 
format labels for training. Therefore, conversion between JSON and txt formats is 
required before training, after which txt format labels and images are stored 
separately. 

We added borders of different sizes to the original dataset while transforming the 
label information based on position relationships. The border sizes were 1/10, 1/9, 
1/8, and 1/7 of the length and width of the original image, and the fill pixel values 
were 0 and 255. The experimental group was defined based on the border size and 
border fill pixel value. Subsequently, eight categories were defined: (1/10, black), 
(1/10, white), (1/9, black), (1/9, white), (1/8, black), (1/8, white), (1/7, black), and 
(1/7, white). 

The network was trained based on the following computer hardware environment: 
Intel i7-11700, Nvidia Tesla T4 16G, and 32 GB of RAM. In terms of the 
development environment, CUDA 10.2, Python 3.7.4, and PyTorch 1.11.0 were 
adopted. 

3.2 Model Evaluation 
In this study, the detection evaluation metrics of the COCO dataset [37] were used 
to evaluate the crack detection models. The evaluation metrics of COCO are 
widely used to evaluate computer vision tasks and are among the most mainstream 
object detection evaluation metrics. Because the dataset in this study contains only 
one type of object, two metrics of the COCO evaluation were selected to evaluate 
the crack detection models, i.e., mAP@50 and mAP@50:95. 

Precision and recall are widely used to evaluate classification models. Precision 
represents the number of objects detected by the model as true objects, and recall 
represents the number of true objects detected by the model. 

TPPrecision
TP FP

=
+

 (5) 

TPRecall
TP FN

=
+

 
(6) 

In addition, the object detection task introduces the interaction over union (IoU), 
which is a key concept in detection evaluation metrics. The annotation and 
prediction of object detection are represented by bounding boxes that create an 
overlap area between these two regions, and IoU represents the ratio of the 
intersection and union of the two regions. 
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Figure 3 

Definition of IoU 

3.3 Training Schemes 
In this study, four different crack-detection models were obtained by modifying 
the activation function of the YOLOv5 network: Model-1 (SiLU), Model-2(Tanh), 
Model-3 (ReLU), and Model-4 (LeakyReLU). To verify the enhancement effect 
of the proposed image preprocessing method for edge crack identification, the 
dataset was fed into the network for training. During training, both the control and 
experimental groups were trained using an official YOLOv5s pretraining model 
with a batch setting of 4, which did not require much adjustment or interference 
with the network. The training epochs were set to 300, the size of both the training 
and validation images was set to 640 × 640, and the remaining parameters were 
set at default values for training. This training scheme was trained on four 
different crack identification models, and 36 sets of experiments were conducted. 

4 Results and Discussion 

4.1 Effect of Board Size 
The training results were obtained by performing the training schemes shown in 
Tables 1 and Table 2. For the Model-1 crack detection model, the mAP@50 did 
not improve significantly compared with that of the control group after adding 
different sizes of borders to change the relative positions of the edge cracks. Based 
on a border size of 1/7 and using the white fill value, the mAP@50 metric of 
Model-1 was 0.2% lower than that of the control group. However, the 
mAP@50:95 metric of Model-1 was better than that of the control group after 
adding different sizes of borders, where the maximum improvement was 3.6%. 
The different performances of mAP@50 and mAP@50:95 indicate that the image 
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preprocessing method performs better under high IoU conditions and that the 
detection bounding boxes are closer to the ground truth. 

Table 2 
mAP50 training metrics 

Size Value Model-1 Model-2 Model-3 Model-4 
- - 0.933 0.856 0.931 0.922 

1/10 
black 0.935 0.892 0.940 0.942 
white 0.936 0.897 0.939 0.944 

1/9 
black 0.939 0.916 0.950 0.949 
white 0.936 0.918 0.941 0.947 

1/8 
black 0.937 0.905 0.938 0.940 
white 0.933 0.907 0.936 0.937 

1/7 
black 0.933 0.901 0.941 0.936 
white 0.931 0.898 0.936 0.931 

Table 2 
mAP50:95 training metrics 

Size Value Model-1 Model-2 Model-3 Model-4 
- - 0.693 0.534 0.671 0.677 

1/10 
black 0.715 0.599 0.702 0.705 
white 0.718 0.592 0.694 0.706 

1/9 
black 0.729 0.618 0.712 0.711 
white 0.724 0.617 0.692 0.704 

1/8 
black 0.723 0.606 0.691 0.705 
white 0.720 0.600 0.688 0.691 

1/7 
black 0.722 0.616 0.697 0.709 
white 0.706 0.577 0.689 0.692 

Because the Model-3 and Model-4 crack detection models differed by only their 
activation response values when negative inputs were used, the values of the final 
training indicators were similar. When the frame size was set to 1/9, Model-3 
achieved the highest value for mAP@50 among the 36 sets of tests, with a 
maximum value of 95.0%. Meanwhile, the mAP@50 of Model-4 was 94.9%, 
which differed by only 0.1% from that of Model-3. 

For the Model-2 detection model, its mAP@50 and mAP@50:95 values were 
85.6% and 53.4% higher than those of the control group, respectively. After 
adding different sizes of borders to change the relative position of the edge cracks, 
the training metrics improved to varying degrees. Among them, mAP@50 and 
mAP@50:95 indicated the highest values of 91.8% and 61.8%, respectively, 
which were 6.2% and 8.4% higher than those of the control group, respectively, 
i.e., significantly surpassing the performances of the other three crack recognition 
models. 
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Figures 4 and 5 illustrate the effect of different border sizes on the training results. 
Under different border sizes, the four detection network models showed a 
consistent trend. As the border size increased gradually, the values of the training 
results first increased and then decreased. When the border size was set to 1/9 of 
the original image size, the mAP@50 and mAP@50:95 of the four different 
detection network models reached the highest values. As the border size increased 
further, the values of the metrics began to decrease but remained than those of the 
control group. When the border size was increased to 1/7, only the value of 
mAP@50 in Model-1 was lower than that in the control group, whereas the values 
of the final results for the other three models remained higher than those of the 
control group. 

The analysis above indicates that adding a border to the dataset under the same 
training size reduces the object area of the crack. Additionally, the image 
preprocessing method, which is used to change the relative position of edge cracks 
based on the training results, can effectively improve the accuracy of the crack 
detection network. In particular, under high IoU conditions, the improvement in 
accuracy was more significant. This method demonstrated good applicability as 
well as desirable improvements in the four crack detection networks used in this 
study. 

 
(a) The border is filled with black                           (b) The border is filled with white 

Figure 4 
The trend of mAP50 under different border sizes 
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(a) The border is filled with black                           (b) The border is filled with white 

Figure 5 
The trend of mAP50:95 under different border sizes 

4.2 Effect of Board Padding Values 
To verify the effect of the border fill pixel values on the recognition accuracy, two 
pixel values, i.e., those of black and white, were set at each border size. Tables 3 
and 4 show the difference in the training metrics for two different fill pixel values 
at the same border size, with the difference calculated as the black-fill value minus 
the white-fill value. As shown in Table 3, the mAP@50 differed by a maximum of 
0.9% and a minimum of -0.5%. Four of the groups with black pixel-value filled 
borders showed training results with lower values compared with those with 
white-filled pixel-value filled borders, whereas the remaining showed training 
results with higher values compared with those with white pixel-value filled 
borders. 

In terms of mAP@50:95, only two groups of black-filled borders indicated lower 
final values compared with that of white-filled borders, with values of -0.3% and -
0.1%, separately. In the remaining eight groups, the values indicated by the black-
filled borders exceeded those of the white-filled borders, and the difference 
exceeded 1% in five groups, with a maximum difference of 3.9%. 

A comparison of the differences between mAP@50 and mAP@50:95 shows that 
the effect of padding pixel values on mAP@50 was less significant than that on 
mAP@50:95 for different border sizes. For Model-3, the training results with 
black padding in the border were always better than those with white padding for 
image preprocessing using any of the border sizes. For the remaining three 
detection models, at least one set of training results with black padding was worse 
than those with white padding. In particular, for Model-2, the mAP@50 with 
black fill was lower than those with white fill for border sizes of 1/10, 1/9, and 
1/8; however, a completely opposite performance was indicated for mAP@50:95. 
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The analysis above shows that the training result obtained using black for border 
filling based on the same border size is better than using white for filling. 
Whereas, the border filling value imposes a greater effect on metrics in the high 
IoU condition, which can reach up to 3.9%. 

Table 3 
The difference between the mAP@50 of two different fill pixel values 

Size Model-1(%) Model-2(%) Model-3(%) Model-4(%) 
1/10 -0.1 -0.5 0.1 0.2 
1/9 0.3 -0.2 0.9 0.2 
1/8 0.4 -0.2 0.2 0.3 
1/7 0.2 0.3 0.5 0.5 

Table 4 
The difference between the mAP@50 of two different fill pixel values 

Size Model-1(%) Model-2(%) Model-3(%) Model-4(%) 
1/10 -0.3 0.7 0.8 -0.1 
1/9 0.5 0.1 2.0 0.7 
1/8 0.3 0.6 0.3 1.4 
1/7 1.6 3.9 0.8 1.7 

4.3 Effect of Activation Functions 
Figure 6 shows the crack detection results for the control and experimental groups. 
By transforming different activation functions, the crack detection network 
performs differently on the same dataset. In the control group, Model-1 
outperformed the other three crack detection networks in terms of all recognition 
metrics. After image preprocessing, the mAP@50 of Model-3 began to exceed 
that of Model-1. As the border size increased gradually, the difference between 
the mAP@50 training results of the two models increased and reached a 
maximum of 1.1%. However, the mAP@50:95 remained better than that of the 
remaining three crack detection networks, which implies that the crack detection 
network using the SiLU activation function can yield more accurate prediction 
results for different scenes. 

 

(a) control group (b) (1/10, black) (c) (1/10, white) 
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(d) (1/9, black) (e) (1/9, white) (f) (1/8, black) 

 
(g) (1/8, white) (h) (1/7, black) (i) (1/7, white) 

Figure 6 
Crack detection results 

For the control group and the preprocessed railway tunnel crack dataset, Model-3 
using the ReLU activation function and Model-4 using the LeakyReLU activation 
function did not indicate significantly different training results, indicating that the 
ability of the two models in predicting road tunnel cracks as actual cracks was 
comparable. Among the four models, Model-2 performed the worst in the nine 
datasets, particularly in the control group; the difference between the mAP@50 
and mAP@50:95 of Model-1 and the control group was 7.7% and 15.9%, 
respectively. We speculate that this situation occurs because the relatively high 
negative response value of the tanh activation function for processing negative 
inputs causes the non-convergence of the crack detection network, thus causing 
the training metrics to be worse than those of the other three crack detection 
networks. Therefore, we transformed the tanh activation function into a tanhshrink 
activation function with a higher negative response value when processing the 
negative inputs. We selected the control group, (1/10, black), and (1/9, black) for 
verification, whose training parameters are consistent with Model-2. Meanwhile, 
the crack detection network using the tanhshrink activation function is named 
Model-5, and the training results are shown in Table 5. 

Table 5 
Comparison of Model-2 and Model-5 activation function results 

Dataset Control group (1/10, black) (1/9, black) 
Model Model-2 Model-5 Model-2 Model-5 Model-2 Model-5 

mAP@50 0.856 0.621 0.892 0.567 0.916 0.746 
mAP@50:95 0.534 0.293 0.599 0.223 0.618 0.386 
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Figure 7 

Plots of tanhshrink activation functions 

Based on the evaluation results of the supplementary experiments, the values of 
the training metrics of Model-5 on three different datasets were significantly lower 
than those of Model-2; its mAP@50 was only 81.4% of that of Model-2 at the 
maximum, whereas its mAP@50:95 was less than 50% of that of Model-2 on the 
(1/10, black) dataset, which is sufficient to prove that the negative response value 
is not conducive to the convergence of the network. 

Figures 8 and 9 show the training and validation loss curve trends of the four 
crack recognition models on the control group and (1/9, black) dataset. As shown 
in Fig. 8, the loss curves of Model-1, Model-3, and Model-4 declined rapidly at 
the beginning of training. Whereas, that of Model-2 indicated a transient increase 
before declining; nonetheless, the convergence rate was low. The loss curves of 
Model-3 and Model-4 almost coincided, indicating that the two models exhibited 
significant similarities in the crack detection task. At the end of training, Model-2 
and Model-1 indicated the highest and lowest loss values, respectively. Generally, 
lower loss values indicate better training metrics. 
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(a) Training loss on control dataset                      (b) Training loss on (1/9,black) dataset 

Figure 8 
Four different crack detection models training loss curves 

 
(a) Validation loss on control dataset                       (b) Validation loss on (1/9,black) dataset 

Figure 9 
Four different crack detection models validation loss curves 

The four models shown in Fig. 9 indicate significant oscillations in their 
verification loss curves in the early stage of training. This is primarily because 
when the number of iterations in the “pretraining–fine-tuning” mode is low, the 
crack anchor predicted by the forward inference of the weighted parameter matrix 
differs from the actual crack anchor. The training weights at this time cannot be 
effectively used for crack detection. As the number of iterations increased, the loss 
curve oscillation of the four models became milder and more stable, whereas the 
loss curve of Model-1 decreased rapidly at the highest convergence speed; 
consequently, the model was the first to converge at the 120th epoch. When the 
training epoch reached 240 rounds, the other three models converged. Because the 
validation set was defined as the test set, the validation loss was more reliable than 
the training loss when evaluating the prediction performance of different models. 
Based on the analysis above, the training results yielded by transforming the 
activation function of the network in the crack detection task were completely 
different. Model-1, which uses the SiLU activation function, can yield more 
accurate prediction results in different scenarios and converge the fastest. Model-2 
performed unsatisfactorily in the crack detection task of railway tunnels, and the 
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high negative response value of the tanh activation function was not conducive to 
the convergence of the network. 

Conclusions 

We proposed an image preprocessing method to improve the recognition effect of 
a tunnel crack model. In the method, different sizes of borders were added to the 
training set and test set data, thereby changing the relative position of edge crack 
targets in the image. Furthermore, testing was performed using different 
recognition models, and the conclusions obtained are as follows: 

1) The image preprocessing method proposed herein effectively improved the 
training metrics of the railway tunnel crack detection model, and as the frame size 
increased gradually, the training results of different models improved. When the 
border size was 1/9, the results for the training metrics of the four crack detection 
networks were optimal. Compared with the control group, Model-2 indicated 
higher values of mAP@50 and mAP@50:95 by 6.2% and 8.4%, respectively. 

2) Based on a comparative analysis of the border fill pixel values, the values of 
mAP@50 under the same border size were similar, with a maximum difference of 
only 0.9%. Meanwhile, the mAP@50:95 value of the group with black fill was 
slightly lower than that of the group with white fill. Whereas, those of the 
remaining groups were higher than that of the group with white fill, where a 
maximum difference of 3.9% was indicated. Based on the difference indicated, the 
border fill pixel value imposed a more significant effect on the training indicators 
of high IOU conditions, and the effect of black fill was better than that of white 
fill. 

3) In the crack detection experiment, Model-1 performed most stably in different 
scenarios as well as yielded more accurate prediction results and converged faster. 
The high negative response value of the tanh activation function was not 
conducive to the prediction performance of Model-2 in the crack detection task. 
Therefore, for railway tunnel crack-recognition models, functions with high 
negative response values should be avoided. 
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